检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈龙彪[1] 张大庆[2] 李石坚[1] 潘纲[1]
机构地区:[1]浙江大学计算机学院,杭州310027 [2]北京大学信息学院,北京100871
出 处:《地球信息科学学报》2016年第11期1485-1493,共9页Journal of Geo-information Science
基 金:教育部新世纪优秀人才支持计划(NCET-13-0521)
摘 要:随着港口信息化建设的推进,积累了大量来源多样、结构各异的海事大数据,为了解港口城市的生产力和区域经济发展水平提供了新的契机。本文综合介绍了作者近期关于如何利用海事大数据进行港口感知计算的工作,给出了一个基于海事大数据的港口感知计算框架,利用船舶GPS轨迹、船舶属性、港口地理信息和港口设施参数等多源异构海事大数据,估算出一系列反映港口生产力的指标,从而对港口进行综合评价和比较。首先,利用船舶轨迹和港口地理信息数据,自动检测船舶在港口码头中的靠泊装卸事件;然后,利用船舶属性和港口设施数据,自动估计出每次靠泊装卸事件的货物吞吐量;最后,对各个港口码头的靠泊船数和货物吞吐量进行统计,从而计算出一系列港口生产力指标,包括到港船数、货物吞吐量、码头作业效率和泊位利用率等。在2011年的海事大数据上的实验结果表明,本框架能准确地估算出上述港口生产力指标。同时,以香港为例对上述港口的生产力指标进行分析,探讨基于海事大数据的港口感知计算框架在提高港口生产效率、优化海运航线中的积极作用。With the wide applications of information and communication technologies in port infrastructures and operations, huge volumes of maritime sensing data have been generated. These data come from various sources and demonstrate heterogeneous structures, providing us with new opportunities to understand port performance and regional economic development. In this paper, we introduce the recent work on port sensing and computation based on maritime big data. Specifically, by making use of ship GPS trajectories, ship attributes, port geographic information and port facility parameters, we can automatically estimate a set of metrics for the measurement and comparison of port performance. First, we can use ship GPS trajectories and port geographic information to detect the events of ships arriving at different ports and terminals. Second, we can use ship attributes and port facility parameters to estimate the cargo throughput of each arrived ship. Third, we can aggregate the ship arriving events and the cargo throughput in different terminals and ports to derive a set of port performance metrics, including ship traffic, port throughput, terminal productivity and facility utilization rate. Evaluation results using real-world maritime data collected in 2011. Results showed that these methods accurately estimated the port performance metrics. We also presented a case study in port of Hong Kong to showcase the effectiveness of our framework in port performance analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38