检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《公路交通科技》2016年第11期120-125,共6页Journal of Highway and Transportation Research and Development
基 金:河南省科技攻关计划项目(162102210327)
摘 要:运用人工智能领域的启发式搜索方法,以交通网络为研究对象,在深入分析经典Dijkstra最短路径算法的基础上,提出了一个基于启发式的最短路径算法,并证明了该方法的有效性。经过对改进算法仔细分析后,讨论了其改进之处。结合具体应用,从启发函数、搜索范围和排序方法等方面,提出了相应的改进策略,并将其应用到仿真试验中。结果表明:在不同图层下,该算法具有良好的伸缩性;与已有路径选择改进算法相比,在不同路径权值选择下,都能够有效地缩短路径查找时间,从而更好地满足出行需要。同时,也给出了不同地理距离下初始搜索半径的参考值。By using heuristic search method in artificial intelligence, focusing on transport network, on the basis of in-depth analysis of the classical Dijkstra shortest path algorithm, a shortest path algorithm based on heuristic and proved the effectiveness of this method is proposed. After a careful analysis of the improved algorithm, the respects needed to be improved are discussed. Combining with specific applications, the corresponding improvement strategies are proposed from the aspect of heuristic function, searching range and sorting method, and these improvements are applied to the simulation experiment. The result shows that (1) the proposed algorithm has good scalability in different layers;(2) compared with the existing improved path selecting algorithm, the proposed one can effectively shorten the path finding time under different path weight options, thereby to better meet the travel needs. The reference values of the initial search radius for different geographical distance are also given.
关 键 词:智能交通系统 限制搜索区域 启发式方法 交通网络 路径搜索 左倾树
分 类 号:U491[交通运输工程—交通运输规划与管理] TP311[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63