检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴才武[1] 张月丛[1] 夏建新[2] WU Caiwu ZHANG Yuecong XIA Jianxin(College of Resource and Environmental Sciences, Hebei Normal University for Nationalities, Chengde, Hebei 067000, China College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China)
机构地区:[1]河北民族师范学院资源与环境科学学院,河北承德067000 [2]中央民族大学生命与环境科学学院,北京100081
出 处:《土壤学报》2016年第6期1568-1575,共8页Acta Pedologica Sinica
基 金:河北省高等学校科学研究计划项目(QN2016308);承德市科学技术研究与发展计划项目(20155004)资助~~
摘 要:土壤水分对土壤光谱反射率有显著影响,而以往有机质遥感反演制图中却很少将水分作为预测建模的变量。为了使遥感制图更加符合野外实际环境,提高有机质预测制图精度,在充分考虑土壤样点空间自相关、异相关与野外复杂环境特点的基础上,通过地统计获得研究区水分的空间分布数据,结合遥感反射率,建立多因子预测模型,得到了吉林省黑土区土壤有机质空间分布图。结果表明,有机质遥感制图中,水分因素的加入,使模型的建立更加符合野外实际情况,显著提高了有机质预测制图的精度。Soil moisture has a significant impact on soil spectral reflectance,while it was rarely involved in modeling for remote-sensing-inversion-based mapping of soil organic matter in the past. In order to improve the accuracy of spatial prediction of soil organic matter,by taking into full account the characteristics of soil sampling sites,such as spatial autocorrelation,independence and complex field environment,the paper gathered via geostatistis soil moisture spatial distribution data in the study area,based on which in combination of remote sensing reflectance a multivariable prediction model was built up and a soil organic matter spatial distribution map of the black soil region in Jilin Province was plotted. Results show that in remote-sensing mapping of soil organic matter,the involvement of soil moisture as a variable,made the model more consistent with the field reality,and improved significantly the prediction accuracy of the mapping,which fully reflected the variation of soil organic matter in the black soil region of Jilin Province.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.69