High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H_2O as an oxidizer  

High-performance InGaN/GaN MQW LEDs with Al-doped ZnO transparent conductive layers grown by MOCVD using H_2O as an oxidizer

在线阅读下载全文

作  者:林家勇 裴艳丽 卓毅 陈梓敏 胡锐钦 蔡广烁 王钢 

机构地区:[1]State Key Lab of Optoelectronics Materials & Technologies, School of Electronics and Information Technology,Sun Yat-Sen University [2]School of Materials Science and Engineering, Sun Yat-Sen University

出  处:《Chinese Physics B》2016年第11期668-671,共4页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.61204091,61404177,51402366,and U1201254);the Science and Technology Planning Project of Guangdong Province,China(Grant No.2015B010132006)

摘  要:In this study,the high performance of InGaN/GaN multiple quantum well light-emitting diodes(LEDs) with Aldoped ZnO(AZO) transparent conductive layers(TCLs) has been demonstrated.The AZO-TCLs were fabricated on the n-+-InGaN contact layer by metal organic chemical vapor deposition(MOCVD) using H2O as an oxidizer at temperatures as low as 400 ℃ without any post-deposition annealing.It shows a high transparency(98%),low resistivity(510 -4 Ω·cm),and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer.A forward voltage of 2.82 V @ 20 mA was obtained.Most importantly,the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL(LED-Ⅲ),and by28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer(LED-Ⅱ),respectively.The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application.In this study,the high performance of InGaN/GaN multiple quantum well light-emitting diodes(LEDs) with Aldoped ZnO(AZO) transparent conductive layers(TCLs) has been demonstrated.The AZO-TCLs were fabricated on the n-+-InGaN contact layer by metal organic chemical vapor deposition(MOCVD) using H2O as an oxidizer at temperatures as low as 400 ℃ without any post-deposition annealing.It shows a high transparency(98%),low resistivity(510 -4 Ω·cm),and an epitaxial-like excellent interface on p-GaN with an n+-InGaN contact layer.A forward voltage of 2.82 V @ 20 mA was obtained.Most importantly,the power efficiencies can be markedly improved by 53.8%@20 mA current injection and 39.6%@350 mA current injection compared with conventional LEDs with indium tin oxide TCL(LED-Ⅲ),and by28.8%@20 mA current injection and 4.92%@350 mA current injection compared with LEDs with AZO-TCL prepared by MOCVD using O2 as an oxidizer(LED-Ⅱ),respectively.The results indicate that the AZO-TCL grown by MOCVD using H2O as an oxidizer is a promising TCL for a low-cost and high-efficiency GaN-based LED application.

关 键 词:MOCVD conductive epitaxial transparent indium resistivity annealing transparency attributed sapphire 

分 类 号:TN312.8[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象