检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学电气工程学院,江苏省南京市210096 [2]南京师范大学电气与自动化工程学院,江苏省南京市210023
出 处:《电力系统自动化》2016年第22期56-62,共7页Automation of Electric Power Systems
基 金:国家自然科学基金资助项目(51577030)~~
摘 要:在开放的电力市场环境下,双边合同交易的竞争不仅包括合同签订双方即发电商和大用户之间的竞争,还包括多个发电商之间为获得更多的发电量而产生的合同电价的竞争。在此背景下,文中构建了计及多个发电商与多个大用户之间的双边合同交易的主从博弈模型。其中发电商的目标是通过与其他发电商进行非合作博弈,从而确定最优合同报价以使其通过双边合同售电的利润最大;而大用户则根据发电商的报价及预测的现货电价来选择其购电策略,从而使其购电成本最小。对主从博弈的纳什均衡解的存在性进行了证明并给出了博弈纳什均衡解的求解思路。算例结果表明博弈的参与者,即发电商和大用户都因参与博弈而受益。In a deregulated electricity market,the competitions of bilateral contract transacting include the competition between generation companies and large consumers and the contract price competition among multiple generation companies to get more power generation.To formulate these competitions,a master-slave game model for multiple generation companies and large consumers is proposed for the bilateral contract transactions.In this model,the goal of the generation company is to determine the optimal bidding price through the in-cooperative game with other power suppliers to maximize its bilateral trading profit;while large consumers decide their personnel purchase strategy to minimize their cost and based on the contract price provided by generation companies and the forecast of the spot price.Moreover,the existence proof and solution of the Nash equilibrium for the game model are presented.Finally,a numerical example is illustrated and the results show that each participant can benefit from the proposed game.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.202.226