检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐正明[1,2] 黄卡玛[1] TANG Zheng-Ming HUANG Ka-Ma(College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China School of Electronics and Information Engineering, China West Normal University, Nanchong 637002, China)
机构地区:[1]四川大学电子信息学院,成都610064 [2]西华师范大学电子信息工程学院,南充637002
出 处:《四川大学学报(自然科学版)》2016年第6期1273-1277,共5页Journal of Sichuan University(Natural Science Edition)
基 金:国家重点基础研究发展规划(973)项目(2013CB328900;2013CB328905);西华师范大学创新团队项目(CXTD2014-12)
摘 要:在多模腔中实现均匀加热较为困难但极其重要,而电场的特性对能否实现均匀加热起决定性作用.研究多模腔电场产生剧变的条件,对于改善微波加热均匀性有积极意义.本文从亥姆赫兹方程出发,利用并矢格林函数,得到了腔体内电场的积分方程;然后,通过此方程讨论并得到电场稳定性的主要影响因素和特点;最后,在运用有限元法验证多模腔电场特性的基础上,进一步得到导致电场产生剧变的各参数的最小变化量.Heating uniformity is important but difficult to achieve, and it is highly dependent on the characteristics of electric field. Hence, it is significant to study the condition of dramatic changes of elec- tric field in multimode cavity. In this paper, firstly, Helmholtz equation and dyadic Green's function are used to derive the integral equation. Then, by discussing the characteristics of the derived equation, the authors obtain the main factors and characteristics of its stability. Finally, the conclusion is verified by finite element method, and the smallest change of parameter that results in dramatic changes of electric field is presented.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.219.150