基于改进多元模糊均生函数的天然径流预测及其验证  被引量:2

Forecasting of natural flows using improved multiple fuzzy mean generating function model and its verification

在线阅读下载全文

作  者:兰甜 张洪波[1,2] 王斌[1] 张红梅 

机构地区:[1]长安大学环境科学与工程学院,西安710054 [2]长安大学旱区地下水文与生态效应教育部重点实验室,西安710054 [3]河北省石津灌区管理局,石家庄050051

出  处:《水力发电学报》2016年第11期52-63,共12页Journal of Hydroelectric Engineering

基  金:国家自然科学基金(51379014);陕西省科学技术研究发展计划项目(2014KJXX-54)

摘  要:天然径流的计算是区域水资源评价和水利水电工程设计的基础。在综合前人已有成果的基础上,提出了改进多元模糊均生函数时间序列预测模型。模型有机整合了模糊均生函数、逆推思想、提取优势周期、外部预测因子以及最优子集回归等思想和方法,解决了传统模型中周期算法的临近数据失效、模型结果仅具有统计意义等问题。模型被运用于渭河流域咸阳站的天然径流预测,并从分布特征、统计参数、降水径流关系三个方面对其结果的可靠性和方法的有效性进行了验证。结果表明,该模型适用于天然径流预测,且可获得较高的预测精度。Calculation of natural or unimpaired flows is a key task in regional water resources assessment and hydroelectric project design. This paper presents an improved multiple fuzzy mean generating function model to forecast natural flows, based on several methods developed in previous studies. The model integrates this special function with the backstepping approach, extracting predominant periods and external factors, and optimal subset regression, and hence it is able to solve successfully the two frequently encountered problems in the conventional approaches: that they cannot effectively use the last data in a series, and that they produce results only statistically significant but inaccurate. We have verified this new model by testing its application to the natural runoff series at the Xianyang gauge station on the Wei River and examined the characteristics of probability distribution, statistical parameters, and precipitation-runoff relationship. Results show that it is an effective and rather accurate model.

关 键 词:水文预测 天然径流 改进多元模糊均生函数 最优子集回归 渭河 

分 类 号:P333.9[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象