检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军信息工程大学信息系统工程学院,河南郑州450001
出 处:《信号处理》2016年第11期1356-1362,共7页Journal of Signal Processing
基 金:国家高技术研究发展计划项目(2012AA01A502)
摘 要:针对天线相关性或接收环境不理想引起的信道矩阵秩损问题,提出了一种基于扩展空间的秩损MIMO检测算法,该算法采用分布式接收架构获得扩展的高维接收信号矩阵,充分利用分布式接收信号的独立性使信道矩阵达到满秩,然后通过基于信道矩阵QR分解的M分支树搜索算法检测出发送数据,为了度量所提算法性能的好坏,给出了分布式接收信号的克拉美罗界。理论分析与仿真结果表明,与现有的秩损MIMO检测算法相比,所提算法在增加少量复杂度的情况下,估计结果更加接近克拉美罗界,且在大信噪比时性能优异。Multiple-input multiple-output (MIMO) and orthogonal frequency division multiplexing (OFDM) are the core technology of the new generation of communication system, the combination system called MIMO-OFDM can achieve higher capacity and overcome the frequency selective fading. The rank of channel matrix will be deficient as a result of antenna correlation or special scattering structure in wireless MIMO channels, in which the traditional MIMO detection algorithm cannot be applied directly. In order to overcome the problem, distributed receiving system was put forward, which can achieved full rank matrix required according to the extension of the channel matrix. The classical detection algorithms in- clude QR decomposition algorithms and sphere decoding algorithms. In order to reach the detection results and reduce the complexity of the maximum likelihood, QRD-M detection algorithm was used to detect the sending signal of the distributed system above. To measure the result of MIMO detection, this paper gave the Cramer-Rao bound of the distributed system. Through the theoretical analysis, the CRB derivation and model simulation, this algorithm was proved to have the obvious advantages in against the channel rank loss compared with the existing rank-deficient MIMO detection algorithms, the algo- rithm perform well and the RMSE is more close to the CRB.
分 类 号:TN929.53[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28