检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川成都610059
出 处:《西南交通大学学报》2016年第6期1147-1153,共7页Journal of Southwest Jiaotong University
基 金:中国科学院STS计划资助项目(KFJ-EW-STS-094);国家自然科学基金资助项目(41502297;41472325)
摘 要:滚石冲击钢筋混凝土板过程伴随复杂的能量转化,基于经验或Hertz接触理论的传统钢筋混凝土板抗冲击设计与实际状况有较大出入.为探索一种更加高效准确的滚石冲击响应计算方法,引入Olsson针对正交各向异性复合板提出的冲击动力控制方程,结合弹塑性接触理论开展滚石冲击钢筋混凝土板动力响应分析,并与Hertz解及动力有限元解进行对比,结果表明:相同条件下,Hertz理论解由于仅考虑板的弹性变形,其峰值冲击力较弹塑性理论解和动力有限元解分别增大31.8%和77.1%,其最大压痕深度较后两者分别增大17.3%和61.8%,而基于弹塑性接触准则的冲击动力响应更加接近于动力有限元解,趋于真实,且避免了复杂建模过程,高效可行.The process of rockfall impact on reinforced concrete slabs is accompanied by complex energy transformation. The traditional engineering design, which was based on experience or the Hertz contact law, has great deviation with actuality. In order to develop an efficient and accurate calculation method of rock-fall impact response, we adopted dynamic equations proposed by Olsson for orthotropic composite plates under impact loads, meanwhile compared the dynamic responses calculated according to the elasto-plastic contact law, the Hertz contact law and the dynamic finite element method. The results show that, in the same conditions, as the plastic deformations of slabs were considered in the Hertz solution, its peak contact force was larger than the elasto-plastic solution and dynamic finite element solution by 31.8% and 77. 1% respectively. Moreover, the maximum indentation derived from Hertz solution was increased by 17.3% and 61.8% than the elasto-plastic solution and dynamic finite element solution, respectively. The elasto-plastic dynamic responses were closer to the dynamic finite element solutions than Hertz dynamic responses, demonstrating that the proposed elasto-plastic method is efficient and accurate without complicated modeling process.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166