检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贺智明[1] 张慧云[1] 毛伊敏[1] He Zhiming Zhang Huiyunt Mao Yimin(Faculty of Information Engineering, Jiangxi University of Science & Technology, Ganzhou Jiangxi 341000, China)
机构地区:[1]江西理工大学信息工程学院,江西赣州341000
出 处:《计算机应用研究》2016年第12期3735-3738,共4页Application Research of Computers
基 金:国家自然科学基金资助项目(41362105)
摘 要:针对位图索引数据存储空间大、检索效率低的问题,提出了一种结合分段位图和B^+树的云数据索引机制(BBI)。BBI在索引创建时按照一定的基数对元组数据进行分段,以段为单位建立位图索引,索引数据量的决定因子由属性值的取值范围转变为分段数与基数的乘积,大大减少了索引数据量;同时,在每个数据节点上建立B^+树,避免了数据检索时对非结果数据的逐个遍历,从而显著提高了数据检索效率。实验结果表明,BBI索引是一种性能较优的云数据索引机制。In order to solve the large storage space of indexing data in bitmap index and low efficiency during retrieving, this paper developed a cloud data index mechanism combined segmented bitmap and B + tree(BBI). BBI divided data into several segments based on a certain number when the index was created, bitmap index by segment. It changed the decision factor of the index data quantity from the range of attribute values to the product of the segments and certain number, which greatly re- duced the storage space of the index data. Furthermore, it built the B + tree on each data node, the unnecessary computing expenses on local nodes could be avoided according to the global distribution information. Therefore, retrieving efficiency could be greatly improved. The experimental results show that the BBI index is a better data index in cloud data index mechanism.
关 键 词:云数据索引 分段位图索引 B+树 并行执行 索引排序
分 类 号:TP311.12[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.75