基于基础颜色特征的自适应尺度的多目标跟踪算法  

Multi-object tracking based on basic color feature and adaptive scale

在线阅读下载全文

作  者:胡鹏[1] 范勇[1] 高琳[1] Hu Peng Fan Yong Gao Lin(School of Computer Science & Technology, Southwest University of Science & Technology, Mianyang Sichnan 621010, China)

机构地区:[1]西南科技大学计算机科学与技术学院,四川绵阳621010

出  处:《计算机应用研究》2016年第12期3897-3900,共4页Application Research of Computers

基  金:四川省教育厅资助项目(14CZ0012);绵阳市三网融合基金资助项目(13ZD3109;13ZD3110)

摘  要:在多目标跟踪领域,多个相似目标间相互遮挡时易产生误跟踪、漏跟踪等问题。针对上述问题,通过引入语言学中的基础颜色及自适应尺度因子来解决。采用颜色命名过程及主成分分析法提取目标基础颜色特征,准确区分相似目标;同时引入自适应尺度因子,自动改变目标尺度,减少因尺度变化而引入的干扰信息,增强目标外观模型的鲁棒性。基于以上两点,在SPOT(structure preserving object tracking)算法基础上,提出了CSSPOT(basic color adaptive scale SPOT)算法。在对比实验中,CSSPOT算法在跟踪准确率及计算时间这两方面较原算法均有所提升,充分说明了基础颜色特征及自适应尺度因子的正确性及有效性。In multi-object tracking, when the occlusion between similar objects happen, the tracking error and drain tracking come up easily. To solve this problem, this paper brought the basic color in the linguistic study into multi-object tracking. It extracted the basic color feature of the target, through the process of color naming and PCA, it could distinguish similar objects accurately. It considered the adaptive scale factor in the meantime. This procedure could automatically change the scale of the target to improve the robustness of the appearance model. Based on the SPOT algorithm, this paper proposed the multi-object tracking algorithm, called CSSPOT. The experiment shows that the CSSPOT has better performance both in the accuracy of tracking and the computing time than SPOT, and demonstrates the accuracy and effectiveness of basic color feature and adaptive scale factor.

关 键 词:基础颜色特征 自适应尺度因子 多目标跟踪 颜色命名过程 主成分分析 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象