检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学舰艇装备仿真技术研究所,湖北武汉430033
出 处:《计算机仿真》2016年第11期9-13,共5页Computer Simulation
摘 要:冷凝器温度控制是维持和保证舰船正常运行的关键因素之一,为对过程进行准确分析,需要建立其高精度的仿真模型。单纯采用集中参数法无法保证模型计算精度,而采用分布参数法则计算效率低。为建立适用的舰船冷凝器温度控制模型并兼顾仿真精度和计算效率,综合采用集中参数法和分布参数法建立冷凝器壳体及冷却水流动换热数学模型,采用稳定化Petrov-Galerkin方法将冷却水一维流动换热的偏微分方程转换成Modelica支持的代数微分方程组形式,并在Dymola平台上建立系统模型。通过试验数据验证了模型的准确性,真空度及凝水温度的仿真结果与试验数据的误差分别为3.5%和4.7%,证明了改进方法的有效性,并提高在冷却水流量及温度的扰动下冷凝器的动态响应。Condenser temperature control is one of the key factors to maintain and ensure the normal operation of the ship. In order to make an accurate analysis of the process, establishing a high precision simulation model is necesary. In the paper, we built the mathematical models of the condenser shell and cooling water flow using lumped parameter method and distributed parameter method synthetically. Stabilized Petrov-Galerkin method was used to convert the partial differential equations of the one-dimensional flow heat transfer of cooling water into algebraic differential equations supported by Modelica. Then the system model was built on Dymola platform. The validity of the condenser model was verified by experimental data. The simulation result errors of the vacuum degree and the water temperature of the condenser are 3.5% and 4.7% respectively. The dynamic response of condenser parameters under the disturbance of cooling water flow and temperature was studied, which provides a reference for the control strategy formulation and the design and optimization of the condenser.
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145