检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周汝峰 王绪本[1] 秦策[1] 徐玉聪[1] 张君涛[1] 王瑞[1]
机构地区:[1]成都理工大学,地球勘探与信息技术教育部重点实验室,成都610059
出 处:《地球物理学进展》2016年第5期2306-2312,共7页Progress in Geophysics
基 金:国家自然科学基金(41274078)--大地电磁垂直磁场和倾子正反演方法研究资助
摘 要:大地电磁测深二维正则化反演方法常见的有NLCG(非线性共轭梯度反演)和OCCAM反演等.NLCG反演速度较快,但较依赖初始模型和经验参数输入;OCCAM反演对初始模型和参数依赖较弱,且效果平滑度、与模型的拟合度较好,但是速度慢、计算消耗大;本文采用综合反演法(NLCG2OCCAM,NLCG的反演结果作OCCAM反演的初始模型),旨在结合二者的优势,避免其短板.对典型模型分别进行了TE、TM、TETM三种模式的试算,结果显示综合反演法效果比只进行NLCG反演好,收敛速度上比单独进行OCCAM反演快,从而削弱由于NLCG人为经验参数输入及初始模型带来的影响,同时也能满足速度的需求.通过这些研究,可以对野外大地电磁资料处理与解释提供参考,从而更好地利用其测深资料.NLCG (nonlinear conjugate gradient inversion ) and OCCAM inversion are the common methods of 2D MT inversion. Both of them have their own advantages and disadvantages, for example, NLCG inversion is faster, but it is more dependent on the initial model and empirical parameters. However, OCCAM inversion is not so dependent on the initial model and parameters, and the effect of smoothness and the fitting of the model are better, but the speed is slow or the calculation is very large. In this paper, it uses the comprehensive inversion method (NLCG2OCCAM, NLCG inversion results for the initial model of OCCAM inversion), which aims to combine the advantages of the two methods and to avoid the short board. Three kinds of models of TM, TETM and TE are used, the result shows that the effect of the comprehensive inversion method is better than that of the NLCG, and the convergence speed is faster than that of the OCCAM, so as to weaken the impact of NLCG on the input and initial model of the empirical parameters, but also to meet the needs of speed. Through these studies, it can provide a reference for the processing and interpretation of field data in the field, so as to better use of the data from the field.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.236.97