Microstructure and Nano-hardness of Pure Copper and ODS Copper Alloy under Au Ions Irradiation at Room Temperature  被引量:1

Microstructure and Nano-hardness of Pure Copper and ODS Copper Alloy under Au Ions Irradiation at Room Temperature

在线阅读下载全文

作  者:Jing Zhang Yong-Qin Chang Zhi-Meng Guo Ping-Ping Liu Yi Long Fa-Rong Wan 

机构地区:[1]School of Materials Science and Engineering, University of Science and Technology Beijing

出  处:《Acta Metallurgica Sinica(English Letters)》2016年第11期1047-1052,共6页金属学报(英文版)

基  金:financially supported by the National Natural Science Foundation of China (Nos. 11175014, 50971030);the National Basic Research Program of China (No. 11163110);the National Magnetic Confinement Fusion Program (No. 2011GB108002)

摘  要:The microstructure and nano-hardness of the pure copper and oxide dispersion-strengthened(ODS) copper alloy subjected to 1.4 Me V Au ions irradiation at room temperature were investigated. After irradiation, dislocation-loops form in both materials, while voids can only be generated in the pure copper. Compared with the irradiated pure copper, larger average diameter and lower number density of irradiation-induced dislocation-loops were detected in the ODS copper alloy, revealing that high-density dislocation and large volume of Al2O3 particles existing in the ODS copper alloy can act as effective sinks for the irradiation-induced defects. It was also detected that irradiation hardening in the ODS copper alloy is lower than that in the pure copper. The microstructure and nano-hardness results reveal that the ODS copper alloy has a better irradiation tolerance than the pure copper. In addition, the average diameter of the Al2O3 particles in the ODS copper alloy decreases after irradiation, because the Al–O chemical bonds are decomposed and the atoms are redistributed in the matrix during the irradiation process. This work reveals that the irradiation tolerance of the copper can be effectively enhanced by adding nano-sized Al2O3 particles into the matrix.The microstructure and nano-hardness of the pure copper and oxide dispersion-strengthened(ODS) copper alloy subjected to 1.4 Me V Au ions irradiation at room temperature were investigated. After irradiation, dislocation-loops form in both materials, while voids can only be generated in the pure copper. Compared with the irradiated pure copper, larger average diameter and lower number density of irradiation-induced dislocation-loops were detected in the ODS copper alloy, revealing that high-density dislocation and large volume of Al2O3 particles existing in the ODS copper alloy can act as effective sinks for the irradiation-induced defects. It was also detected that irradiation hardening in the ODS copper alloy is lower than that in the pure copper. The microstructure and nano-hardness results reveal that the ODS copper alloy has a better irradiation tolerance than the pure copper. In addition, the average diameter of the Al2O3 particles in the ODS copper alloy decreases after irradiation, because the Al–O chemical bonds are decomposed and the atoms are redistributed in the matrix during the irradiation process. This work reveals that the irradiation tolerance of the copper can be effectively enhanced by adding nano-sized Al2O3 particles into the matrix.

关 键 词:Oxide dispersion-strengthened copper alloy Ions irradiation Microstructure evolution Nano-hardness 

分 类 号:TG146.11[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象