3D打印浓缩风能装置用于风洞试验安全性分析  被引量:2

Security analysis of 3D-printed wind-energy concentration device in wind tunnel test

在线阅读下载全文

作  者:姬忠涛[1,2] 田德 

机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),北京102206 [2]曲靖师范学院物理与电子工程学院,曲靖655011

出  处:《农业工程学报》2016年第21期230-234,共5页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家自然科学基金资助项目(59776033)

摘  要:通过3D打印技术可以方便快捷地制作出浓缩风能装置风洞试验模型,但必须对其安全性进行分析。该文采用流固耦合分析方法,对利用3D打印技术按1:4.5的比例制作的浓缩风能装置模型用于风洞试验的安全性进行分析。首先通过计算流体力学软件对流体场进行网格无关性分析,然后对流体场进行仿真模拟,得出了浓缩风能装置模型在风洞中的风速分布,其结果表明,浓缩风能装置叶轮安装平面6点风速平均值为流场入口风速的1.40倍,该倍率与参考文献中的实际测量平均倍率1.38倍非常接近,这说明按1:4.5的比例制作的浓缩风能装置模型用于该文所述尺寸风洞按该文中的设置进行模拟计算是正确的。然后将该模型表面风压分布作为载荷加载到此模型上,得到该模型在风洞中所受最大应力为3.5385 MPa,远小于所选3D打印材料的拉伸强度40.2 MPa和弯曲强度67.8 MPa,且最大偏移量仅为1.8675 mm,因此采用文中所选3D打印材料通过3D打印技术制作风洞试验模型是安全的。Wind-energy concentration device model can be efficiently made by 3D(three-dimensional) printers, but its security must be tested. This research adopts a fluid-solid interaction(FSI) method to study the security of the 3D printed wind-energy concentration device model in wind tunnel tests. At first, by using the CAD(computer aided design) software, a solid field model of a wind-energy concentration device is created with a proportion of 1:4.5. Then the solid field model is imported into the finite element analysis software. Based on the size of the wind tunnel, a cubic area of 20 m × 3 m × 3 m(length × width × height) is established, and the concentration device model has the same axial line with the length direction. Then by the Boolean subtraction method, a geometric fluid field is built through subtracting the solid field area in the box area. The interface between the fluid field and the concentration device model is just fluid-solid interaction interface. And the fluid field is simulated and calculated with the help of the CFD(computational fluid dynamics) software. An SST k-ω turbulence model is adopted. In terms of the meshes, a non-uniform tetrahedron meshing is applied. Different numbers of meshes are meshed and the grid independence test is performed. This research takes air as the fluid medium. The temperature is 273.15 K and the pressure is 101325 Pa. The density, velocity, viscosity, thermal conductivity coefficient, constant-pressure specific heat capacity, mass flow rate, turbulent kinetic energy(k value) and specific dissipation rate(ω) are 1.293 kg/m3, 30 m/s, 1.72×10-5 kg/(m·s), 0.0244 W/(m·K), 1005 J/(kg·K), 349.11 kg/s, 1.3336 m2/s2 and 150.6047 s-1, respectively. This research adopts the mass flow inlet and pressure flow outlet. Surface roughness of the wind-energy concentration device model is set to 0.3 mm. When the component residual reaches 1.0×10-4 kg/s, the equation is thought to converge and the distribution of the wind speed in the

关 键 词:风能 有限元方法 速度 3D打印 浓缩风能装置 流固耦合 

分 类 号:F11[经济管理—国际贸易]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象