日光温室土墙体温度变化及蓄热放热特点  被引量:16

Temperature variation, heat storage and heat release characteristics of soil wall in solar greenhouse

在线阅读下载全文

作  者:史宇亮[1,2] 王秀峰[1,3] 魏珉[1,3] 李清明[1,3] 刘福胜[4] 侯加林[5] 

机构地区:[1]山东农业大学园艺科学与工程学院,泰安271018 [2]青岛农业大学园艺学院,青岛266109 [3]农业部黄淮海设施农业工程科学观测实验站,泰安271018 [4]山东农业大学水利与土木工程学院,泰安271018 [5]山东农业大学机械与电子工程学院,泰安271018

出  处:《农业工程学报》2016年第22期214-221,共8页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家现代农业产业技术体系建设专项(CAR-25)

摘  要:为研究日光温室土墙体温度变化规律及蓄放热特性,以泰安市下挖式土墙日光温室为研究对象,在温室北墙布置5个测试层,通过各测试层最冷季节(30 d)温室内气温、墙体温度、室外气温及室外太阳辐照度测试数据,分析了土墙日光温室内部温度及墙体内温度的分布规律。结果表明:各测试层墙体表面及0.1~0.6 m处测点的温度均呈现出随温室气温周期性变化的规律,且随着墙体厚度的增加温度的波动幅值逐渐减小,相位明显后移;0.7 m以后测点的温度幅值趋于稳定,处于稳态向室外的导热过程。基于墙体温度分布规律,对墙体白天的蓄热量、夜间的放热量及墙体夜间放热效率进行了计算,得出墙体夜间放热效率为43%,表明土墙白天蓄积热量的43%用于改善夜间温室内热环境。对墙体蓄热和放热量计算,综合评价墙体的平均放热效率,可以为土墙日光温室结构优化及热负荷计算提供指导,为各地土墙温室轻简化技术研究提供理论基础。The solar greenhouse of soil wall, which has the advantages of good heat storage and low construction cost, is widely used in China. At present, the study on the heat storage and heat release performance of soil wall is an important hot spot, which can provide the theoretical basis for the simplification and thickness optimization of soil wall. In the paper, the sunken soil wall greenhouse serves as the research object in Taian, Shandong Province, China. The length is 50 m and the width is 10 m. The top and bottom thicknesses of the soil wall are 1.47 and 3.0 m, respectively. In order to get a better analysis of the heat storage and heat release performance of soil wall, the five testing layers of temperature were arranged in the north wall of greenhouse. The testing period was from Dec. 1st, 2014 to Jan. 30th, 2015. The outdoor weather conditions, indoor air temperature and interior wall temperature were monitored during the testing period. The variation regularity of the indoor and interior wall temperature was analyzed according to the monitoring data in the coldest season (from Dec. 20th, 2014 to Jan. 19th, 2015). The results showed that the testing point temperature of wall surface and interior wall (0.1-0.6 m) presented periodicity variation regularity with the indoor temperature variation in greenhouse, and temperature fluctuation amplitude reduced gradually, at the same time the phase was lags obviously along the wall thickness direction. Moreover, it showed that the interior wall (0-0.6 m) could be considered as the heat storage and heat release body in the soil wall. The heat storage body in the soil wall had large temperature fluctuation, which could be used for storing heat during daytime and releasing heat into the solar greenhouse during night. Besides that, the temperature fluctuation of testing point behind 0.7 m tended to the stabilization, which was in the process of the steady-state heat transfer from the soil wall to outdoors and could be considered as temperature stabilization bod

关 键 词:温室 温度 环境调控 温室墙体 蓄热量 放热量 放热效率 

分 类 号:S625.5[农业科学—园艺学] S625.1

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象