检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邰扬 黄亚继[1] 刘长奇[1] 刘凌沁[1] 卢志海
机构地区:[1]东南大学能源热转换及其过程测控教育部重点实验室,南京210096 [2]滕州亿源煤矸石热电有限公司,枣庄277500
出 处:《农业工程学报》2016年第22期244-250,共7页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家"973"重点基础研究发展规划项目(2013CB228106)
摘 要:生物质热解提质制高品位生物油技术是当前研究热点,该文基于能值投入产出结构和能值指标,考虑环境因素,运用能值分析方法对樟子松快速热解催化加氢提质(方案1)和超临界乙醇提质(方案2)制高品位生物油系统进行综合评价,并分别从生产效率、自然环境支持力以及可持续性3个角度进行对比。结果表明,在生产等量燃料情况下,方案2消耗的太阳能更少,效率更高,但在人类社会投入及总投入方面方案1少于方案2,方案1系统的可再生率更高,对环境的压力更小,可持续性更好,工艺更受环境支持。该文为提高生物质热解提质制生物油系统的综合性能提供理论依据。Fast pyrolysis of biomass and upgrading techniques for the high chemical value bio-oil production have been investigated widely in recent decades. A variety of upgrading techniques are applied in industrial manufacture process, while the production efficiency and sustainability of those techniques have their own merits and demerits, which emphasizes the importance of the evaluation systems for those techniques. Several evaluation methods, such as energy analysis, exergy analysis, and emergy analysis, have been developed to evaluate the fast pyrolysis of biomass and upgrading techniques. Based on different emergy flows, the methods chosen for the thermodynamic analysis lead to various outcomes. All the input and output energies in an industrial production system are considered in energy analysis, while exergy analysis takes the additional available energy into account. In emergy analysis, all kinds of emergy flows are taken into consideration, including monetary flow, information flow and energy flow. Emergy analysis is derived from the viewpoint that the sun provides the energy for everything on the earth so it is reasonable to convert all kinds of energy to the solar energy. It is so efficient and comprehensive that it has been applied to evaluate the fast pyrolysis of biomass and upgrading techniques. Based on the input-output framework and emergy indices, with the consideration of environment elements, emergy analysis method was applied to comprehensively evaluate two schemes in this paper, achieving upgraded bio-oil from pinus sylvestris by fast pyrolysis and catalytic hydrogenation (Scheme I) and supercritical ethanol upgrading technique (Scheme II), respectively. Meanwhile, the effects of different schemes were compared from three aspects, including production efficiency, environmental support and sustainability. As the results indicated, Scheme II consumed less solar energy and enjoyed higher efficiency when the same amount of fuel was produced. For the input of economic emergy and total emergy, Sc
关 键 词:热解 投入 生产效率 樟子松 提质 能值 可持续性
分 类 号:TK6[动力工程及工程热物理—生物能]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.93