检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学计算机科学与工程学院,沈阳110819 [2]东北大学研究院,沈阳110819
出 处:《吉林大学学报(工学版)》2016年第6期2021-2026,共6页Journal of Jilin University:Engineering and Technology Edition
基 金:国家科技支撑计划项目(2014BAI17B01);软件开发环境国家重点实验室开放课题项目(SKLSDE-2012KF-02)
摘 要:提出了一种可以在两个极大可判定前缀词公式类上实现信念修正OPEN过程模式的算法,该算法从初始形式理论出发,依据不断获取的新事实信息,迭代修正形式理论,完成形式理论的进化。探讨了OPEN过程模式的两种可判定公式类的表达能力,证明了其表达能力强于一阶逻辑的子集FO^2和模态逻辑,并给出了实际应用例子。An algorithm for OPEN proxcheme is proposed that functions in the two maximal decidable classes of first-order logic. The algorithm iteratively revises the formal theories according to new information and completes the evolution of the formal theories. The expressive power of the OPEN proxcheme is discussed. It is demonstrated that the OPEN proxcheme and R-calculus preserve the decidability of formulas in the two maximal decidable classes. Since the decision problem for modal logic and FO2 can be transferred to that of the two maximal decidable classes, it can be concluded that the OPEN proxcheme and R-calculus are more expressive than the modal logic and FO2. Practical examples, such as hardware description and verification, are provided.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7