Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization  被引量:7

Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization

在线阅读下载全文

作  者:Wenchao Zhao Shaoqing Zhang Jianhui Hou 

机构地区:[1]State Key Laboratory of Polymer Physics and Chemistry [2] Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China [2]University of Chinese academy of Sciences. Beijing 100049, China

出  处:《Science China Chemistry》2016年第12期1574-1582,共9页中国科学(化学英文版)

基  金:supported by the National Basic Research Program(2014CB643501);the National Natural Science Foundation of China(91333204,21325419);the Chinese Academy of Sciences(XDB12030200)

摘  要:In this work, photovoltaic properties of the PBDB-T:ITIC based-NF-PSCs were fully optimized and characterized by tuning the morphology of the active layers and changing the device architecture. First, donor/acceptor(D/A) weight ratios were scanned,and then further optimization was performed by using different additives, i.e. 1,8-diiodooctane(DIO), diphenyl ether(DPE),1-chloronaphthalene(CN) and N-methyl-2-pyrrolidone(NMP), on the basis of best D/A ratio(1:1, w/w), respectively. Finally,the conventional or inverted device architectures with different buffer layers were employed to fabricate NF-PSC devices, and meanwhile, the morphology of the active layers was further optimized by controlling annealing temperature and time. As a result,a record efficiency of 11.3% was achieved, which is the highest result for NF-PSCs. It's also remarkable that the inverted NF-PSCs exhibited long-term stability, i.e. the best-performing devices maintain 83% of their initial PCEs after over 4000 h storage.In this work, photovoltaic properties of the PBDB-T:ITIC based-NF-PSCs were fully optimized and characterized by tuning the morphology of the active layers and changing the device architecture. First, donor/acceptor (D/A) weight ratios were scanned, and then further optimization was performed by using different additives, i.e. 1,8-diiodooctane (DIO), diphenyl ether (DPE), 1-chloronaphthalene (CN) and N-methyl-2-pyrrolidone (NMP), on the basis of best D/A ratio (1:1, w/w), respectively. Finally, the conventional or inverted device architectures with different buffer layers were employed to fabricate NF-PSC devices, and meanwhile, the morphology of the active layers was further optimized by controlling annealing temperature and time. As a result, a record efficiency of 11.3% was achieved, which is the highest result for NF-PSCs. It's also remarkable that the inverted NF-PSCs exhibited long-term stability, i.e. the best-performing devices maintain 83% of their initial PCEs after over 4000 h storage.

关 键 词:polymer solar cells MORPHOLOGY interfacial layers device architecture STABILITY 

分 类 号:TM914.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象