基于高斯过程回归的燃煤烟气汞排放预测  被引量:5

Prediction of Mercury Emission from Coal-fired Flue Gas Based on Gaussian Process Regression

在线阅读下载全文

作  者:钟美[1] 赵兵涛[1] 黄朔[1] 

机构地区:[1]上海理工大学能源与动力工程学院,上海200093

出  处:《动力工程学报》2016年第12期987-992,共6页Journal of Chinese Society of Power Engineering

基  金:国家自然科学基金资助项目(50806049;51278095);上海市自然科学基金资助项目(08ZR1415100);沪江基地建设资助项目(D14001)

摘  要:选取对烟气汞排放影响显著的特征参数,采用一类新的随机过程方法——高斯过程回归模型来预测烟气中单质汞、氧化汞和颗粒汞的排放浓度,分别讨论了协方差函数和样本比例对模拟预测精度的统计学影响.结果表明:平方指数协方差函数优于有理二次协方差函数和Matern协方差函数;预测精度随样本比例的增大而提高;高斯过程回归模型优于常规非线性模化方法并显示出更好的鲁棒性,对烟气中汞的形态预测有较好的适用性.By selecting the parameters which significantly influence the mercury emission from coal-fired flue gas, the concentration of elemental, oxidized and particulate mercury in flue gas was predicted using Gaussian process regression, a new random process method, while the effects of covariance function and train-test sample ratio on the simulation accuracy were respectively studied. Results show that the squared exponential covariance function is better than rational quadratic and Matern covariance function; the predicted accuracy increases with the rise of train-test sample ratio; Gaussian process regression is superior to traditional modeling methods of nonlinear regression, and displays good generalization ability, which therefore has strong applicability in prediction of mercury speciation in coal-fired flue gas.

关 键 词:燃煤烟气 汞形态 高斯过程回归 模化 预测 

分 类 号:TK16[动力工程及工程热物理—热能工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象