检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:麻秀范[1] 王超[1] 洪潇[1] 李颖[1] 王皓[1]
机构地区:[1]华北电力大学电气与电子工程学院,北京市昌平区102206
出 处:《电网技术》2016年第12期3706-3714,共9页Power System Technology
摘 要:建立了基于节点阻塞电价的电动汽车充电双层优化模型。在上层模型中,建立含电动汽车负荷的直流最优潮流模型,优化各机组出力使系统总发电成本最小,利用拉格朗日乘子和功率传输分布因子确定节点阻塞电价。在下层模型中,优化目标不仅包括充电费用,而且计及了电池损耗成本、充电等待时间成本;约束条件增加了行驶和充电的电池荷电状态等;将用户充电电价分为分时电价和浮动的阻塞电价两部分,优化电动汽车充电负荷时考虑其一日可多次充电的情况。上层模型向下层模型传递每时段充电电价、下层模型向上层模型反馈每时段充电负荷,通过迭代求解双层优化模型,使电网和用户经济效益最大。最后通过算例验证了所建立模型的有效性。Based on analysis of electric vehicle(EV) users' driving behavior and charging profile, a two layer model for charging power optimization for each car and prevention of network congestion caused by simultaneous EV charging is proposed. The upper layer aims to generate EV charging price, calculated with DC optimal power flow(DCOPF). Charging price consists of two parts: day-ahead time use price and congestion price subtracted from distribution location marginal price(DLMP), determined by Lagrange multiplier and power transfer distribution factor(PTDF). The lower layer function is to minimize total cost, including charging, battery usage and charging waiting time costs. Among constraints, limits on driving and charging are considered in detail. In order to solve this model, the upper layer gives charging price to the lower one, and the lower layer returns charging power to the upper one. Finally, numerical cases demonstrate effectiveness and applicability of the proposed model.
分 类 号:TM721[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3