计及全寿命周期成本的两阶段电动汽车充电网络规划模型  被引量:19

Two-Stage Electric Vehicle Charging Network Planning Model Considering Life Cycle Cost

在线阅读下载全文

作  者:张程嘉 刘俊勇[1] 刘友波[1] 向月[1] 孙兵[2] 张凯[3] 

机构地区:[1]四川大学电气信息学院,四川省成都市610065 [2]国网北京市电力公司,北京市西城区100031 [3]国网北京市电力公司经济技术研究院,北京市昌平区102209

出  处:《电网技术》2016年第12期3722-3731,共10页Power System Technology

基  金:国家自然科学基金项目(51377111)~~

摘  要:电动汽车产业推进依赖于其充电网络,设计了电动汽车充电网络的两阶段规划模型,模型第一阶段运用伏罗诺伊图,根据充电站数目以全体充电站服务半径之和最大对充电站进行选址。模型第二阶段基于全寿命周期成本理论,考虑规划过程中的不确定性因素,建立了计及用户便利度修正因子的充电网络定容模型。定容模型在第一阶段选址基础上,通过充电负荷转移效应确定充电负荷需求,以最小全寿命周期成本为目标,规划定容结果。最后,运用将莱维飞行与传统粒子群算法相结合的混合搜索算法对上述规划模型进行求解,通过规划实例验证了所提模型的有效性。Development of electric vehicle(EV) industry relies on effective planning of charging network. A novel two-stage planning model of EV charging network is presented in this paper. Particularly, in the first stage, Voronoi Diagram is applied to select optimal locations of charging stations according to principle of maximum sum of all charging station service radius. In the second stage, taking life cycle cost(LCC) theory and uncertain factor in planning process into consideration, EV charging network capacity planning model is investigated taking user convenience degree correction factor into account. Charging load is obtained through charging load shift effect. On basis of the locations obtained from the first stage of the model, charging load requirement is determined with charging load shift effect, planning capacity results with minimum LCC as objective. Improved hybrid search algorithm combining particle swarm optimization(PSO) with Levy flight(LF-PSO) is utilized to avoid premature phenomena. Effectiveness of the model was verified with simulations.

关 键 词:充电网络 用户便利度修正因子 全寿命周期成本 不确定性因素 充电负荷转移效应 

分 类 号:TM721[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象