GaAs-based polarization modulators for microwave photonic applications  

GaAs-based polarization modulators for microwave photonic applications

在线阅读下载全文

作  者:Yu XIANG Shilong PAN 

机构地区:[1]Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

出  处:《Frontiers of Optoelectronics》2016年第3期497-507,共11页光电子前沿(英文版)

基  金:Acknowledgements This work was supported in part by the National Basic Research Program of China (No. 2012CB315705), the National Natural Science Foundation of China (Grant Nos. 61422108 and 61527820), Fundamental Research Funds for the Central Universities (Nos. NP2015404, NE2012002); and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

摘  要:GaAs-based polarization modulators (PolMs) exhibit the unique characteristic of simultaneous intensity and complementary phase modulation owing to the linear electro-optic (LEO) effect determined by crystallographic orientations of the device. In this paper, we reviewed the principle of operation, the design and fabrication flows of a GaAs-based PolM. Analytical models are established, from which the features of a PolM are derived and discussed in detail. The recent advances in PolM-based multifunctional systems, in particular the PolM-based optoelectronic oscillator (OEO) are demonstrated with an emphasis on the remarkable development of applications for frequency conversion, tunable microwave photonic filter (MPF), optical frequency comb (OFC), arbitrary waveform generation (AWG) and beamforming. Challenges in practical implementation of the PolM-based systems and their promising future are discussed as well.GaAs-based polarization modulators (PolMs) exhibit the unique characteristic of simultaneous intensity and complementary phase modulation owing to the linear electro-optic (LEO) effect determined by crystallographic orientations of the device. In this paper, we reviewed the principle of operation, the design and fabrication flows of a GaAs-based PolM. Analytical models are established, from which the features of a PolM are derived and discussed in detail. The recent advances in PolM-based multifunctional systems, in particular the PolM-based optoelectronic oscillator (OEO) are demonstrated with an emphasis on the remarkable development of applications for frequency conversion, tunable microwave photonic filter (MPF), optical frequency comb (OFC), arbitrary waveform generation (AWG) and beamforming. Challenges in practical implementation of the PolM-based systems and their promising future are discussed as well.

关 键 词:GaAs polarization modulator (PolM) optoe- lectronic oscillator (OEO) frequency conversion micro-wave photonics filter (MPF) 

分 类 号:TN304.23[电子电信—物理电子学] TN929.11

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象