基于业务路径和频度矩阵的关联规则挖掘算法  被引量:2

Algorithm for Mining Association Rules Based on Application Paths and Frequency Matrix

在线阅读下载全文

作  者:胡波[1] 黄宁[1] 仵伟强 

机构地区:[1]北京航空航天大学可靠性与系统工程学院,北京100191

出  处:《计算机科学》2016年第12期146-152,162,共8页Computer Science

摘  要:关联规则挖掘为分析机载网络关联故障及提高排故效率提供了重要方法。分析了经典Apriori算法的局限性,结合机载网络领域知识、矩阵运算和频繁项集性质,提出一种高效的关联规则挖掘算法。应用机载网络故障具有的基于业务路径的关联特征,提出分块挖掘策略,从而实现挖掘过程的噪声隔离。提出频度矩阵和特征向量,结合矩阵特点和频繁项集性质,设计5个扫描策略,从而减少了循环次数和对比运算。与Apriori算法相比,新算法能有效提高频繁项集的搜索速率。Association rule mining is an important method to analyze the associated faults of the airborne network and improve the efficiency of faults diagnosis process. This paper analyzed the limitations of the classical Apriori algorithm, and proposed an efficient association rule mining algorithm,which is based on the knowledge of the airborne network, matrix operation and frequent item sets. Due to the association characteristics of the airborne network faults based on the application paths, this paper proposed a mining strategy of block mining, so as to realize the noise isolation in mining process. With the conception of frequency matrix and feature vector, 5 kinds of scanning strategies were proposed, there- by reducing the number of cycles and the comparison operation. Comparing with the classical Apriori algorithm, the new algorithm can effectively improve the search efficiency of frequent itemsets.

关 键 词:关联规则 关联故障 业务路径 分块挖掘 频度矩阵 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象