Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice  被引量:1

Evaluation of Protocols for Measuring Leaf Photosynthetic Properties of Field-Grown Rice

在线阅读下载全文

作  者:CHANG Tian-gen XIN Chang-peng QU Ming-nan ZHAO Hong-long SONG Qing-feng ZHU Xin-guang 

机构地区:[1]Chinese Academy of Science Key Laboratory of Computational Biology and Chinese Academy of Science-Max Planck Gesellschaft Partner Institute for Computational Biology,Shanghai Institutes for Biological Sciences,Chinese Academy of Sciences,Shanghai 200031,China [2]University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Rice science》2017年第1期1-9,共9页水稻科学(英文版)

基  金:financially supported by the Strategic Leading Project of Modular Designer Crop Breeding,Chinese Academy of Sciences(Grant No.XDA08020301)

摘  要:Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system(HAPS), and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.Largely due to the heterogeneity of environmental parameters and the logistical difficulty of moving photosynthetic equipment in the paddy fields, effective measurement of lowland rice photosynthesis is still a challenge. In this study, we showed that measuring detached rice leaves in the laboratory can not effectively represent the parameters measured in situ. We further described a new indoor facility, high-efficiency all-weather photosynthetic measurement system(HAPS), and the associated measurement protocol to enable whole-weather measurement of photosynthetic parameters of rice grown in the paddy fields. Using HAPS, we can conduct photosynthetic measurements with a time span much longer than that appropriate for the outdoor measurements. Comparative study shows that photosynthetic parameters obtained with the new protocol can effectively represent the parameters in the fields. There was much less standard deviation for measurements using HAPS compared to the outdoor measurements, no matter for technical replications of each recording or for biological replications of each leaf position. This new facility and protocol enables rice photosynthetic physiology studies to be less tough but more efficient, and provides a potential option for large scale studies of rice leaf photosynthesis.

关 键 词:photosynthetic photosynthesis weather facility paddy deviation indoor outdoor heterogeneity stomatal 

分 类 号:S511[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象