The numerical and experimental investigations of the near wake behind a modified square stay-cable  被引量:2

The numerical and experimental investigations of the near wake behind a modified square stay-cable

在线阅读下载全文

作  者:沈顺成 汪秒 卢红 邹琳 

机构地区:[1]School of Mechanical and Electronic Engineering,Wuhan University of Technology

出  处:《Journal of Hydrodynamics》2016年第5期897-904,共8页水动力学研究与进展B辑(英文版)

基  金:Project supported by the National Natural Science Foun-dation of China(Grant Nos.11172220,51275372)

摘  要:The near wake structure, the wake-flow characteristics and the drag coefficients behind a modified square stay-cable (MSC) with sinusoidal variations of the cross-section area along the spanwise direction are investigated experimentally and numeri- cally. The Reynolds numbers are chosen as 100 and 500 for the laminar flow and Re = 6 000 and 22 000 for the turbulent flow. The detailed near wake structures, the velocity fields and the force coefficients for the MSC are captured, the effect of the Reynolds number on the flow structure for the MSC is studied. The numerical and experimental investigations show that the free shear layers from the leading edge are widened and prolonged and then roll up into vortices further downstream the MSC, unlike a straight square stay-cable (SSC) under the same flow conditions. As a result, the distinct mean drag reduction and the fluctuating lift suppression are observed for all Reynolds numbers, a drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed, as compared with the case of a straight square stay-cable at Re = 500.The near wake structure, the wake-flow characteristics and the drag coefficients behind a modified square stay-cable (MSC) with sinusoidal variations of the cross-section area along the spanwise direction are investigated experimentally and numeri- cally. The Reynolds numbers are chosen as 100 and 500 for the laminar flow and Re = 6 000 and 22 000 for the turbulent flow. The detailed near wake structures, the velocity fields and the force coefficients for the MSC are captured, the effect of the Reynolds number on the flow structure for the MSC is studied. The numerical and experimental investigations show that the free shear layers from the leading edge are widened and prolonged and then roll up into vortices further downstream the MSC, unlike a straight square stay-cable (SSC) under the same flow conditions. As a result, the distinct mean drag reduction and the fluctuating lift suppression are observed for all Reynolds numbers, a drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed, as compared with the case of a straight square stay-cable at Re = 500.

关 键 词:modified square stay-cable (MSC) wake structure flow control drag reduction 

分 类 号:O357.5[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象