检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mechanical and Electronic Engineering,Wuhan University of Technology
出 处:《Journal of Hydrodynamics》2016年第5期897-904,共8页水动力学研究与进展B辑(英文版)
基 金:Project supported by the National Natural Science Foun-dation of China(Grant Nos.11172220,51275372)
摘 要:The near wake structure, the wake-flow characteristics and the drag coefficients behind a modified square stay-cable (MSC) with sinusoidal variations of the cross-section area along the spanwise direction are investigated experimentally and numeri- cally. The Reynolds numbers are chosen as 100 and 500 for the laminar flow and Re = 6 000 and 22 000 for the turbulent flow. The detailed near wake structures, the velocity fields and the force coefficients for the MSC are captured, the effect of the Reynolds number on the flow structure for the MSC is studied. The numerical and experimental investigations show that the free shear layers from the leading edge are widened and prolonged and then roll up into vortices further downstream the MSC, unlike a straight square stay-cable (SSC) under the same flow conditions. As a result, the distinct mean drag reduction and the fluctuating lift suppression are observed for all Reynolds numbers, a drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed, as compared with the case of a straight square stay-cable at Re = 500.The near wake structure, the wake-flow characteristics and the drag coefficients behind a modified square stay-cable (MSC) with sinusoidal variations of the cross-section area along the spanwise direction are investigated experimentally and numeri- cally. The Reynolds numbers are chosen as 100 and 500 for the laminar flow and Re = 6 000 and 22 000 for the turbulent flow. The detailed near wake structures, the velocity fields and the force coefficients for the MSC are captured, the effect of the Reynolds number on the flow structure for the MSC is studied. The numerical and experimental investigations show that the free shear layers from the leading edge are widened and prolonged and then roll up into vortices further downstream the MSC, unlike a straight square stay-cable (SSC) under the same flow conditions. As a result, the distinct mean drag reduction and the fluctuating lift suppression are observed for all Reynolds numbers, a drag reduction of at least 15.8% and the rms lift coefficient reduction of up to 95% are observed, as compared with the case of a straight square stay-cable at Re = 500.
关 键 词:modified square stay-cable (MSC) wake structure flow control drag reduction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15