检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Applied Physics,Northwestern Polytechnical University
出 处:《Chinese Physics Letters》2016年第12期91-95,共5页中国物理快报(英文版)
基 金:Supported by the National Natural Science Foundation of China under Grant Nos 51571163,51371150,51271150 and 51327901
摘 要:The transparent aqueous solutions of succinonitrile (SCN) provide an effective model system to simulate the phase separation process of various advanced materials. Here we report a real-time and in-situ study of phase separation dynamics for the SCN-15%H2O, SCN-48%H2O and SGN-70%H2O solutions implemented by high-speed CCD videography together with acoustic levitation technique. It is found that liquid phase separation induces an unsteady state of drop rotation under levitated conditions. The resultant centrifugal force plays the dominant role in the migration of secondary liquid globules. The most desirable homogeneously dispersive structures can oniy be derived from the earlier stage of phase separation, whereas three kinds of maerosegregation are always the finally stable structure patterns. The migration velocity of minor liquid phase displays the nonlinear feature owing to the variations of globule location and centrifugal force. The surface tensions and volume fractions of immiscible phases also show a conspicuous influence upon the evolution dynamics of separation morphology.The transparent aqueous solutions of succinonitrile (SCN) provide an effective model system to simulate the phase separation process of various advanced materials. Here we report a real-time and in-situ study of phase separation dynamics for the SCN-15%H2O, SCN-48%H2O and SGN-70%H2O solutions implemented by high-speed CCD videography together with acoustic levitation technique. It is found that liquid phase separation induces an unsteady state of drop rotation under levitated conditions. The resultant centrifugal force plays the dominant role in the migration of secondary liquid globules. The most desirable homogeneously dispersive structures can oniy be derived from the earlier stage of phase separation, whereas three kinds of maerosegregation are always the finally stable structure patterns. The migration velocity of minor liquid phase displays the nonlinear feature owing to the variations of globule location and centrifugal force. The surface tensions and volume fractions of immiscible phases also show a conspicuous influence upon the evolution dynamics of separation morphology.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112