Possible Nodeless Superconducting Gaps in Bi_2Sr_2CaCu_2O_(8+δ) and YBa_2Cu_3O_(7-x) Revealed by Cross-Sectional Scanning Tunneling Spectroscopy  被引量:2

Possible Nodeless Superconducting Gaps in Bi_2Sr_2CaCu_2O_(8+δ) and YBa_2Cu_3O_(7-x) Revealed by Cross-Sectional Scanning Tunneling Spectroscopy

在线阅读下载全文

作  者:任明强 闫亚军 张童 封东来 

机构地区:[1]State Key Laboratory of Surface Physics,Department of Physics,and Advanced Materials Laboratory,Fudan University [2]Collaborative Innovation Center of Advanced Microstructures

出  处:《Chinese Physics Letters》2016年第12期124-128,共5页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China;the National Key Research and Development Program of China under Grant No 2016YFA0300203

摘  要:Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi2Sr2CaCu2O8+δ (Bi2212) and YBa2Cu3O7-x (YBCO) along their c-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended fiat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.

关 键 词:of is in Revealed by Cross-Sectional Scanning Tunneling Spectroscopy and YBa2Cu3O Possible Nodeless Superconducting Gaps in Bi2Sr2CaCu2O by DOS on BI Cu Sr 

分 类 号:O469[理学—凝聚态物理] TM26[理学—电子物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象