检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张燕[1]
出 处:《微型电脑应用》2016年第12期72-77,共6页Microcomputer Applications
摘 要:由于信用卡欺诈检测是一种不合规则的预测任务,需要专门方法来处理并预测,提出一种基于本质特征和网络特征的检测方法,以满足自动化和实时处理的要求。提出的方法结合了两种重要特征,即利用新近度—频率—货币值(RFM)的基本原理,由外来交易和顾客消费历史派生出本质特征;采用信用卡持有人和商家的网络为每个网络对象派生出依赖猜测分数的网络特征。然后将这些特征提供给成熟的学习方法。本文评估了逻辑回归、神经网络和随机森林模型。结果表明本质特征和网络特征的结合产生了最佳执行结果,获得的ROC曲线下面积(AUC)高于0.98。且提出的方法还能够精确地从一系列欺诈交易中挑选出第一笔交易。As fraud detection of credit cards is a kind of irregular prediction task and it needs special methods to process and predict, a detection method based on network characteristics and essential characteristics is proposed to meet the requirements of automation and real-time processing. Two important characteristics are combined in the proposed method, which uses the basic principle of Re- cency-Frequency-Monetary(RFM), and then the essential characteristics is derived by foreign trade and consumer consumption his- tory. The other is network characteristics, in which the guessing score for each network object is derived by the network of credit card holders and merchants. Then these features are provided to mature learning methods. Logistic regression, neural network and random forest model are evaluated in this paper. The results show that the combination of essential features and network characteristics has produced the best results, and the AUC score is higher than 0.98. And the proposed method is also able to pick out the first transac- tion from a series of fraudulent transactions accurately.
关 键 词:信用卡欺诈检测 预测 本质特征 网络特征 新近度-频率-货币值
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222