检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wuyang Ren Handong Li Lei Gao Yong Li Zhongyang Zhang Chengjia Long Haining Ji Xiaobin Niu Yuan Lin Zhiming Wang
机构地区:[1]Institute ofFundamen tal and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China [2]State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Microelectronics and Solid-State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China
出 处:《Nano Research》2017年第1期247-254,共8页纳米研究(英文版)
基 金:Acknowledgements This work is supported by the National Natural Science Foundation of China (Nos. 11104010, 61474014, and 51272038), Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. 20120910), and the National Basic Research Program of China (No. 2013CB933301).
摘 要:Thermal transport in superlattices is governed by various phonon-scattering processes. For extracting the phonon-scattering contribution of hetero-interfaces in chalcogenide superlattices, single-crystalline Bi2Se3/In2Se3 (BS/IS) superlattices with minimized defects are prepared on fluorophlogopite mica by molecular beam epitaxy. The cross-plane heat-conducting properties of the BS/IS superlattices are demonstrated to depend precisely on the period thicknesses and constituents of the superlattices, where a minimum in the thermal conductivity indicates a crossover from particle-like to wave-like phonon transport in the superlattices. The thermal-conductivity minimum of the BS/IS superlattices is nearly one order of magnitude lower than that of intrinsic BS film.Thermal transport in superlattices is governed by various phonon-scattering processes. For extracting the phonon-scattering contribution of hetero-interfaces in chalcogenide superlattices, single-crystalline Bi2Se3/In2Se3 (BS/IS) superlattices with minimized defects are prepared on fluorophlogopite mica by molecular beam epitaxy. The cross-plane heat-conducting properties of the BS/IS superlattices are demonstrated to depend precisely on the period thicknesses and constituents of the superlattices, where a minimum in the thermal conductivity indicates a crossover from particle-like to wave-like phonon transport in the superlattices. The thermal-conductivity minimum of the BS/IS superlattices is nearly one order of magnitude lower than that of intrinsic BS film.
关 键 词:molecular beam epitaxy Bi2Se3 In2Se3 SUPERLATTICE thermal conductivity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145