植被反射光谱中的偏振现象研究  被引量:1

Polarization Phenomenon for Reflectance Spectra of Vegetation

在线阅读下载全文

作  者:赵虎[1] 叶鹏[1] 王聪欣 

机构地区:[1]湖北文理学院遥感应用实验室,湖北襄阳441053

出  处:《遥感信息》2016年第6期22-25,共4页Remote Sensing Information

基  金:国家自然科学基金(40802083;41101544);湖北文理学院博士科研基金(2014001)

摘  要:针对偏振光的特点和优越性,比较研究了植被偏振成像和普通成像,提出植被在强反射光谱中的偏振图像清晰度要优于普通光谱成像,并可提供更丰富更精细的地物特征信息。对比成像的直方图,普通成像的红绿蓝直方图相互之间有很大的相似性,但是偏振成像的直方图之间却有明显的区别和反差,其中红色与蓝色差异不明显,但与绿色有明显的差异。普通成像各通道之间的相似性往往抹去了图像中地物本身的一些特征信息,使图像对比度下降。该文还用常用的图像处理方法对普通图像进行各种图像增强、锐化等处理,结果表明:这些计算机图像处理方法得到的各种增强后的图像,其质量效果无法与植被本身的偏振图像匹敌。最后讨论了偏振光谱成像的理论机制和多角度遥感之间的联系。建议从事多角度遥感研究的学者对偏振现象进行适当的关注。This paper studies the polarization phenomenon of the reflection spectrum of the vegetation. Compared the polarization imaging with the general imaging, the clarity of the vegetation in the polarization image is superior to the one in the ordinary spectral imaging. Judging from the histograms of their imaging, we find the R, G, and B histograms of the ordinary image have much greater similarity. But for the histograms of the polarization imaging of red,green and blue channels, there are significant differences and contrasts. The similarity of the red, green and blue channels in ordinary image often erases some vegetation's characteristic information of itself,and the image contrast in colors decreases too. Meanwhile, we use many image processing methods which are currently used for all varieties images to enhance the ordinary image. But the results show that these enhanced images, which were processed by the current kinds of computer image processing methods, have no excellent effects compared with tbe polarization image. At the end of this paper, it briefly discusses the theoretical mechanism of polarization image, and the relationship between the polarization images with the multi-angle remote sensing images.

关 键 词:植被 反射光谱 直方图 偏振现象 计算机图像 

分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象