On the Connection between the Order of Riemann-Liouvile Fractional Calculus and Hausdorff Dimension of a Fractal Function  被引量:2

On the Connection between the Order of Riemann-Liouvile Fractional Calculus and Hausdorff Dimension of a Fractal Function

在线阅读下载全文

作  者:Jun Wang Kui Yao Yongshun Liang 

机构地区:[1]Institue of Science, PLA University of Science and Technology [2]Institue of Science, Nanjing University of Science and Technology

出  处:《Analysis in Theory and Applications》2016年第3期283-290,共8页分析理论与应用(英文刊)

基  金:supported by BK 20161492;NSFA 11471157

摘  要:This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.This paper investigates the fractal dimension of the fractional integrals of a fractal function. It has been proved that there exists some linear connection between the order of Riemann-Liouvile fractional integrals and the Hausdorff dimension of a fractal function.

关 键 词:Fractional calculus Hausdorff dimension Riemann-Liouvile fractional integral 

分 类 号:O172[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象