检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学信息工程学院,山西太原030024
出 处:《计算机仿真》2017年第1期305-309,共5页Computer Simulation
摘 要:由于现有消防供水系统设备多是手动或半自动人工操作,存在效率低、能耗大、可靠性差的问题,采用常规PID控制,则控制器参数不能随检测数值自动调整,管网压力波动较大。为提高供水系统的稳定性,提出一种小波变换和RBF人工神经元网络控制的全自动化消防供水系统控制方案,上述系统用出水流量、管网压力和水箱液位组成RBF神经网络,对PID参数进行整定,实现了对消防供水系统的操作联动和决策智能化。仿真结果表明,改进的智能化综合供水系统稳定性好、可靠性高,有效节约了水资源并大大提高用水效率,对现代化节能型复杂供水控制系统有一定的参考价值。Because of manual or semi-automatic manual operation equipment, the fire fighting water supply system has problems such as low efficiency, large energy consumption and poor reliability, and it cannot adjust automatically of controller parameters when it detects numerical values, at the same time, it has a large fluctuation of pipe network pressure by using conventional PID control to solve these problems. This paper proposes an automatic fire fighting water supply system based on REF artificial neural network. The new system provides a modified PID parameter setting and realizes linked operation and intelligent decision through RBF neural network which is comprised of water flow, pipe network pressure and water level. The simulation results show that this modified intelligent integrated system has well stability, high reliability, effective water resource saving and improved water efficiency, and it provides a certain reference value to modern energy-saving water supply control system.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151