检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈方鑫[1,2] 张含玉[3,4] 方怒放[1] 史志华[2] CHEN Fangxin ZHANG Hanyu FANG Nufang SHI Zhihua(State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, China College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China Institute of Soil and Water Conservation of Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China Institute of Water and Soil Conservation and Environmental Protection,Linyi University, Linyi 276000, China)
机构地区:[1]西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌712100 [2]华中农业大学资源与环境学院,湖北武汉430070 [3]中国科学院水利部水土保持研究所,陕西杨凌712100 [4]临沂大学水土保持与环境保育研究所,山东临沂276000
出 处:《水科学进展》2016年第6期867-875,共9页Advances in Water Science
基 金:国家杰出青年科学基金资助项目(41525003);国家自然科学基金资助项目(41301294)~~
摘 要:为精确识别黄土高原丘陵沟壑区典型小流域泥沙来源,分析了流域内"源-汇"地区土壤的理化性质及生物标志物(正构烷烃)作为潜在指纹识别因子,并建立了复合指纹模型。结果显示:单独的土壤理化指纹及正构烷烃均不能有效识别泥沙来源;土壤理化指纹和正构烷烃分别在林地、农地及沟道的辨别上显示出其局限性。多元化的复合指纹(碳优势指数CPI、Ca、TP、C_(20)、C_(29)、Fe)则能辨别90.5%的泥沙来源。模型结果显示沟道是该流域泥沙的主要来源,占60.8%,其次为农地占20.7%,林地占11.3%,草地占7.2%。研究表明,结合生物标志物的复合指纹法能更精确地反映泥沙来源,适用于各泥沙源头的地质条件差异较小的流域,对黄土高原小流域水土流失治理具有指导意义。In order to accurately identify sediment sources in the gully and hilly zones of the Loess Plateau, this study was used a composite fingerprinting method that was based on two types of fingerprint factors ( 14 physicochemi- cal properties and 23 biomarker properties (n-alkanes) ) with source samples and sediments derived from check dam. The results showed that, neither the individual physicochemical properties nor biomarker properties cannot effectively identify sediment sources. The physicochemical properties were showing the limitation in identifying forest and crop- land, and the n-alkanes were showing the limitation in identifying the gully. However, the optimum composite finger- print consisted of three physicochemical properties and three biomarker properties (CPI, Ca, TP, C20, C29 and Fe) could correctly distinguish 90.5% of the samples. The results showed that in the study area, gully was the main sedi- ment source in this catchment, reaching 60.8%, while the cropland contributed 20.7% of the sediment, and forest and grassland contributed 11.3% and 7.1%, respectively. This research demonstrates that using the composite finger- print consists of traditional fingerprint properties and biomarkers to identify the sediment source are more accurate, it would be suitable for the area where the geologic variations of a study area are small. The study is meaningful for de- signing sediment management and soil erosion control strategies in Loess Plateau.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249