南水北调中线突发水污染事件的快速预测  被引量:15

Study on the rapid prediction of sudden water pollution for South-to-North Water Transfer Project

在线阅读下载全文

作  者:龙岩[1] 徐国宾[1] 马超[1] 李有明[2] LONG Yan XU Guobin MA Chao LI Youming(State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China Bgi Engineering Consultants LTD , Beijing 100038, China)

机构地区:[1]天津大学水利工程仿真与安全国家重点实验室,天津300072 [2]北京市勘察设计研究院有限公司,北京100038

出  处:《水科学进展》2016年第6期883-889,共7页Advances in Water Science

基  金:国家科技重大专项基金资助项目(2012ZX07205005);天津市应用基础与前沿技术研究计划自然科学基金重点项目(13JCZDJC36200)~~

摘  要:依据南水北调中线干渠资料,开展了正常输水情况下串联明渠内可溶污染物浓度分布规律数值模拟研究。采用数值模拟、数学归纳和统计分析方法,提出表征污染物输移扩散特征的峰值输移距离、污染带长度和峰值浓度的快速预测公式;通过示范工程验证了快速预测公式的可行性。结果表明:1串联明渠内,峰值输移距离随渠道流速减小而减小,并且污染带长度增加值随明渠内流速减小而减小,但是峰值浓度随明渠流速减小而增加;2快速预测公式计算结果与现场试验实测结果的误差均不到15%,证明了快速预测公式的合理性和可行性。这些研究结果为南水北调中线工程突发可溶性水污染事件应急预警方案的制定提供了科学依据。Taking the typical main canal of the middle route of South-to-North Water Transfer Project as an example, the numerical simulation of sudden soluble water pollution in complex channel is carried out. First, the rapid predic- tion formulas of characteristic parameters ( i. e., peak transport distance, pollutant longitudinal length and peak con- centration) are presented based on numerical simulation, mathematical induction, and statistical analysis method. Then the rapid prediction formulas are verified by demonstration project. The results indicate that: ① The peak trans- port distance and the add value of pollutant longitudinal length is decreasing with the channel velocity decreasing, but the peak concentration is increasing with the channel velocity decreasing; ② The relative errors between physical model test, numerical simulation and measured results are less than 15%. The rapid prediction formulas can provide decision support for managers making emergency control measures.

关 键 词:南水北调中线 可溶污染物 数值模拟 示范工程 快速预测 

分 类 号:X522[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象