检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学电子信息学院,陕西西安710129
出 处:《系统工程与电子技术》2017年第2期437-444,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(61305133;61573285);中国高校博士点基金(20116102110026)资助课题
摘 要:引入专家知识已成为小数据集条件下贝叶斯网络建模的主流方法,然而,专家知识是否正确直接决定了算法的结果和性能。因此,在考虑专家知识正确性的基础上,本文对贝叶斯网络结构学习问题展开研究。首先,建立一种基于连接概率分布的结构约束模型来表示专家知识,进而结合该约束模型对贝叶斯信息准则(Bayesian information criterions,BIC)评分进行改进;最后,利用K2算法学习贝叶斯网络结构。实验结果表明,在小数据集条件下本文所提算法不仅能将专家知识引入到学习过程中,进而改善学习效果,并且对不完全正确的专家知识有一定的适应性。Introducing expert knowledge is the main method of Bayesian networks(BN) modeling from small data set. The results and performance of algorithm are affected by the correctness of the expert knowledge. Therefore, considering the correctness of the expert knowledge, the problem of BN learning is studied. First of all, the structural constraints model based on joint probability distribution is proposed to represent the expert knowledge, and then the Bayesian information criterions (BIC) is improved by combining with the constraint model. Finally, the K2 algorithm is used for learning BN. The experimental results show that the proposed algorithm can not only introduce the expert knowledge into the process of BN learning to improve the learing effect, but also have some adaptability to the not entirely correct expert knowledge.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30