基于RAGA的投影寻踪分类模型改进与实例分析  被引量:1

Based on Projection Pursuit Classification Model Improvement and Analysis of Examples RAGA

在线阅读下载全文

作  者:朱成功[1] ZHU Chenggong(School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, Chin)

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《电子科技》2017年第1期107-110,114,共5页Electronic Science and Technology

摘  要:针对实数编码加速遗传算法(RAGA)在求解投影寻踪分类(PPC)模型陷入局部最优的问题,通过引入区间扩展因子:在变量区间过小时,对变量区间进行适当扩展;在扩展区间"越界"时,即以边界作为变量的取值。并选取合理的局部密度窗口半径R,建立了改进的RAGA-PPC分类模型,并以文献中S县15个乡镇申请粮援项目的投资顺序为例进行验证分析。研究表明,改进的RAGA-PPC模型对样本分类评价,确立指标因素的贡献程度大小具有一定的可行性和广泛的通用性。Aiming at the problem that real-coded accelerating genetic algorithm (RAGA) could not solve global optimal solution of PPC Model, this paper proposes an improvement : when variableinterval is too small, then extends variable interval by an appropriate constant; when the extension crosses the border, set the boundary as the variable's value. Combining with proper R value, the improved RAGA-PPC model is established, and using it in food aid pro- ject investment order of S county's 15 towns, more reasonable sequences and each factor's influence on the investment order are obtained, The results show that the improved RAGA-PPC model has strong applicability and generality of sample classification and evaluation as well as estimating each factor's contribution.

关 键 词:实数编码加速遗传算法 区间扩展 窗口半径 投影寻踪分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象