检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王永香[1,2] 郑伟然[1,2] 米慧娟[1,2] 李璐[1,2] 毕宇安[1,2] 王振中[1,2] 萧伟[1,2] WANG Yong-xiang ZHENG Wei-ran MI Hui-juan LI Lu BI Yu-an WANG Zhen-zhong XIAO Wei(Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222001, China State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China)
机构地区:[1]江苏康缘药业股份有限公司,江苏连云港222001 [2]中药制药过程新技术国家重点实验室,江苏连云港222001
出 处:《中草药》2017年第1期102-108,共7页Chinese Traditional and Herbal Drugs
基 金:国家科技部"国家重大新药创制"项目:现代中药创新集群与数字制药技术平台(2013ZX09402203)
摘 要:目的建立热毒宁注射液青蒿金银花醇沉浓缩过程主要药效成分的定量校正模型,实现生产过程在线监控。方法采用近红外光谱技术(NIRS)结合偏最小二乘法(PLSR)分别建立新绿原酸、绿原酸、隐绿原酸的定量校正模型。结果新绿原酸、绿原酸、隐绿原酸定量校正模型的决定系数(R^2)分别为0.954 5、0.975 2、0.9691;校正集误差均方根(RMSEC)为0.213、0.676、0.225,交叉验证集误差均方根(RMSECV)分别为0.233、0.692、0.258。采用所建模型进行在线分析,新绿原酸、绿原酸、隐绿原酸的预测值与实测值的决定系数分别为0.984 2、0.983 7、0.9870,预测相对误差(RPD)分别为4.77、5.29、4.37,预测相对偏差(RSEP)分别为3.519%、3.778%、3.895%。结论所建的模型可以用于热毒宁注射液青蒿金银花醇沉浓缩过程中新绿原酸、绿原酸、隐绿原酸的在线定量测定。Objective The calibration models were developed in the concentration of alcohol precipitation proee for Artemisiae Annuae Herba (AAH) and Lonicerae Flos (LF) in Reduning Injection (RI) to realize the on-line monitoring of production process. Methods Based on the near infrared reflectance spectroscopy (NIRS), partial least regression (PLS) models were developed to fast measure the contents of neochlorogenic acid, chlorogenic acid, and 4-O-caffeoylquinic acid in the concentration of the alcohol precipitation proee for AAH and LF. Results In the quantitative models of neochlorogenic acid, chlorogenic acid, and 4-O-caffeoylquinic acid, the coefficient of determination (R2) of cross validation sets were 0.954 5, 0.975 2, and 0.969 1; The root mean square errors of calibration (RMSEC) were 0.213, 0.676, and 0.225; The root mean square errors of cross-validation (RMSECV) were 0.233, 0.692, and 0.258. When the established models were applied to on-line monitoring, the coefficient of determination of neochlorogenic acid, chlorogenic acid, and 4-O-caffeoylquinic acid were 0.984 2, 0.983 7, and 0.987 0, the residual predictive deviation (RPD) were 4.77, 5.29, and 4.37; The relative standard errors of prediction (RSEP) were 3.519%, 3.778%, and 3.895%. Conclusion The models above are proved to fast measure the contents of neochlorogenic acid, chlorogenic acid, and 4-O-caffeoylquinic acid in the concentration of alcohol precipitation proee for AAH and LF in RI.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116