有样本缺失的稀疏交叉视图的多重集典型相关分析  被引量:2

Multiset Canonical Sparse Cross-view Correlation Analysis with Missing Samples

在线阅读下载全文

作  者:李改改 蒋金山[1] LI Gai-gai JIANG Jin-shan(School of Mathematical Sciences, South China University of Technonlogy, Guangzhou 510640 , P. R. China)

机构地区:[1]华南理工大学数学学院,广州510640

出  处:《科学技术与工程》2017年第3期91-97,共7页Science Technology and Engineering

摘  要:从融合多组特征的角度出发,以多重集典型相关分析算法(MCCA)为研究基础,通过稀疏保持自适应选择样本局部信息,然后通过在同类样本之间计算权重矩阵,将样本类别信息嵌入到算法中,再利用多种视图之间的交叉相关项,克服不同视图样本必须成对出现的局限,提出一种有样本缺失的稀疏交叉视图的多重集典型相关分析算法(multiset canonical sparse cross-view correlation analysis with missing samples,CSMCCAM)。在手写体数据集和CENPARMI数据库上验证本文的算法,得到CSMCCAM算法分类精确度优于LPMCCAM等典型相关分析算法,并且对缺失样本数目不敏感。Based on multiset canonical correlation analysis in the fusion of multi group feature,using sparsity preserving to select local information adaptively,through calculating the weight matrix in samples of the same class embedded the class information into the algorithm,at last introduce the cross-view correlation to overcome the limitations of different view samples must come in pairs,then the multiset canonical sparse cross-view correlation analysis with Missing Samples( CSMCCAM) is proposed. The experimental results on the multiple feature database and CENPARMI database show that the proposed CSMCCAM outperforms the related canonical correlation analysis recognition methods and the recognition accuracy of CSMCCAM is relatively insensitive to the number of missing samples.

关 键 词:多重集典型相关分析 稀疏保持 缺失样本 交叉相关 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象