机构地区:[1]Key Laboratory of Meteorological Disaster,Ministry of Education Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disaster/Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science and Technology,Nanjing 210044,China [2]Anhui Meteorological Disaster Prevention Center,Anhui 230061,China
出 处:《Advances in Atmospheric Sciences》2017年第2期235-245,共11页大气科学进展(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.91537209,91644224);the National Key Basic Research Program of China(Grant No.2014CB441403);the Basic Research Fund of the Chinese Academy of Meteorological Sciences(Grant No.2016Z002)
摘 要:To better understand the relationship between lightning activity and nitrogen oxides (NOx) in the troposphere and to estimate lightning-produced NOx (LNOx) production in China more precisely, spatial and temporal distributions of vertical column densities of tropospheric nitrogen dioxide (NO2 VCDs) and lightning activity were analyzed using satellite measure- ments. The results showed that the spatial distribution of lightning activity is greater in the east than in the west of China, as with NO2 VCDs. However, the seasonal and annual variation between lightning and NO2 density show different trends in the east and west. The central Tibetan Plateau is sparsely populated without modem industry, and NO2 VCDs across the plateau are barely affected by anthropogenic sources. The plateau is an ideal area to study LNOx. By analyzing 15 years of satellite data from that region, it was found that lightning density is in strong agreement with annual, spatial and seasonal variations of NO2 VCDs, with a correlation coefficient of 0.79 from the linear fit. Combining Beirle's method and the linear fit equation, LNOx production in the Chinese interior was determined to be 0.07 (0.02-0.27) TgN yr-1 for 1997-2012, within the range of 0.016-0.384 TgN yr-1 from previous estimates.To better understand the relationship between lightning activity and nitrogen oxides (NOx) in the troposphere and to estimate lightning-produced NOx (LNOx) production in China more precisely, spatial and temporal distributions of vertical column densities of tropospheric nitrogen dioxide (NO2 VCDs) and lightning activity were analyzed using satellite measure- ments. The results showed that the spatial distribution of lightning activity is greater in the east than in the west of China, as with NO2 VCDs. However, the seasonal and annual variation between lightning and NO2 density show different trends in the east and west. The central Tibetan Plateau is sparsely populated without modem industry, and NO2 VCDs across the plateau are barely affected by anthropogenic sources. The plateau is an ideal area to study LNOx. By analyzing 15 years of satellite data from that region, it was found that lightning density is in strong agreement with annual, spatial and seasonal variations of NO2 VCDs, with a correlation coefficient of 0.79 from the linear fit. Combining Beirle's method and the linear fit equation, LNOx production in the Chinese interior was determined to be 0.07 (0.02-0.27) TgN yr-1 for 1997-2012, within the range of 0.016-0.384 TgN yr-1 from previous estimates.
关 键 词:LIGHTNING tropospheric NO2 LNOx
分 类 号:P427.3[天文地球—大气科学及气象学] X511[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...