检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Boyang Zhou Zhicai Luo Yihao Wu Yuqiao Cen
机构地区:[1]Department of Surveying and Mapping,Guangdong University of Technology [2]School of Geodesy and Geomatics,Wuhan University [3]Center for Urban Science and Progress,New York University
出 处:《Geodesy and Geodynamics》2016年第6期444-450,共7页大地测量与地球动力学(英文版)
基 金:supported by the National Natural Science Foundation of China (41504013,41174062);the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China (14-01-03);the Doctoral Scientific Research Foundation of Guangdong University of Technology(253151010)
摘 要:Airborne gravimetry has become a vital technique in local gravity field approximation, and upward/downward continuation of gravity data is a key process of airborne gravimetry. In these procedures, the integral domain is divided into two parts, namely the near-zone and the far-zone. The far-zone contributions are approximated by the truncation coefficients and a global geo-potential model, and their values are controlled by several issues. This paper investigates the effects of flight height, the size of near-zone cap, and Remove- Compute-Restore (RCR) technique upon far-zone contributions. Results show that at mountainous area the far-zone contributions can be ignored when EIGEN-6C of 360 degree is removed from the gravity data, together with a near-zone cap of 1°and a flight height less than 10 km, while at flat area EIGEN-6C of 180 degree is feasible.Airborne gravimetry has become a vital technique in local gravity field approximation, and upward/downward continuation of gravity data is a key process of airborne gravimetry. In these procedures, the integral domain is divided into two parts, namely the near-zone and the far-zone. The far-zone contributions are approximated by the truncation coefficients and a global geo-potential model, and their values are controlled by several issues. This paper investigates the effects of flight height, the size of near-zone cap, and Remove- Compute-Restore (RCR) technique upon far-zone contributions. Results show that at mountainous area the far-zone contributions can be ignored when EIGEN-6C of 360 degree is removed from the gravity data, together with a near-zone cap of 1°and a flight height less than 10 km, while at flat area EIGEN-6C of 180 degree is feasible.
关 键 词:Airborne gravimetryPoisson integralUpward/downward continuationFat-zone contdbutionsRemove -Compute -Restoretechnique
分 类 号:P223.4[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46