基于自动特征提取方法的太阳耀斑预报模型  被引量:3

Solar flare forecasting model based on automatic feature extraction

在线阅读下载全文

作  者:李蓉[1] 朱杰[1] 黄鑫[2] 崔延美[3] 

机构地区:[1]北京物资学院,北京101149 [2]中国科学院国家天文台,北京100012 [3]中国科学院空间科学与应用研究中心,北京100090

出  处:《科学通报》2016年第36期3958-3963,共6页Chinese Science Bulletin

基  金:国家自然科学基金(11273031;11303051);智能物流系统北京市重点实验室项目(BZ0211);北京市智能物流系统协同创新中心项目资助

摘  要:在太阳耀斑预报模型中,首先需要从原始观测数据中提取刻画太阳活动区特性的物理特征参量,然后使用统计或机器学习方法寻找物理特征参量与太阳耀斑发生的关系,以达到建立太阳耀斑预报模型的目的.其中,太阳活动区物理特征的提取在整个建模过程中发挥着重要的作用,活动区物理特征的优劣直接决定着预报模型性能的高低.然而,随着机器学习技术的发展,机器学习方法中的深度学习算法能够从原始数据中自动提取特征,并建立预报模型.本文利用深度学习方法建立了一个太阳耀斑预报模型.与先提取活动区物理参量、再建立预报模型的传统机器学习方法相比较,本文所建立的预报模型具有更好的预报性能.Solar flares are outbursts in the solar atmosphere resulting from sudden release of magnetic energy. The associated high energy particles and radiation threaten the safety of astronauts, reduce the lifetime of satellites, disturb the radio communications and degrade the precision of Global Positioning System. The radiation reaches the Earth about 8 min, and high energy particles take about 30 min to reach the earth after a solar flare. So solar flare forecasting is critical for providing enough time to respond to the space weather effects. Up to now, many statistical and machine learning methods are used to build a solar flare forecasting model. A machine learning based solar flare forecasting model normally requires solar physicists to design a feature extractor which can transform the observational images of active regions into physical features, and then the relationships between the features and the solar flares are discovered by the machine leaning algorithm. The priori knowledge of the solar physicists is added into the solar flare forecasting model by designing the feature extractor. For most of the machine learning methods, the hard part is what kinds of features should be extracted from the raw data. Considerable solar physicists spend a lot of time extracting the physical parameters from observational data of active regions. Deep learning method, which removes this manual step, can automatically discover useful patterns from the raw data and build a forecasting model. Instead of designing the feature extractor by solar physicists, we learn a solar flare forecasting model from magnetogram pixels by using deep learning method. We use Caffe, which is a deep learning framework developed by the Berkeley Vision and Learning Center, to build a convolutional neural network for solar flare forecasting. In order to compare the performance of proposed forecasting model with that of the forecasting model built by using traditional machine learning method, we build the other solar flare forecasting model based on th

关 键 词:太阳耀斑 太阳活动区 磁场特征 机器学习 

分 类 号:P182.52[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象