检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林中冠[1] 栾健[2] 王迪[1] 张春龙[3] 栾澜[4] LIN Zhong-guan LUAN Jian WANG Di ZHANG Chun-long LUAN Lan(Liaoning Meteorological Service Center, Shenyang 110166, China China Meteoro/ogical Administration Training Center Liaoning Branch, Shenyang 110166, China Meteorological Disaster Prevention Technology Center in Heilongjiang Province, Harbin 151030, China Shenyang Agricultural University Agronomy Courtyard, Shenyang 110866, China)
机构地区:[1]辽宁省气象服务中心,沈阳110166 [2]中国气象局气象干部培训学院辽宁分院,沈阳110166 [3]黑龙江省气象灾害防御技术中心,哈尔滨151030 [4]沈阳农业大学农学院,沈阳110866
出 处:《西南大学学报(自然科学版)》2017年第2期84-91,共8页Journal of Southwest University(Natural Science Edition)
基 金:辽宁气象局博士科研专项资助项目(D201603)
摘 要:利用沈阳市2007-2011年6、7、8月探空因子与闪电定位资料,选取适合当地雷暴潜势预报的9个因子,构建双隐层BP人工神经网络预报模型,对当地雷暴的潜势发展进行预报.结果表明:基于双隐层BP人工神经网络的预报模型临界成功指数CSI=57.46%、探测概率POD=79.38%、虚假报警率FAR=32.46%和总指数TS=74.89%,预报效果较令人满意;通过12h和6h潜势预报结果对比发现,6hBP神经网络模型预报效果好,更适用于沈阳地区雷暴潜势预报.In an experiment reported in this paper,nine factors suitable for thunderstorm potential forecast of Shenyang were selected based on the sounding factors and the lightning location data from 2007 to 2011in June,July and August in this city,and a double hidden layer BP artificial neural network prediction model was built to forecast the local thunderstorm potential development.The experiment showed that the double hidden layer BP artificial neural network prediction model gave satisfactory results,with a critical index of success of CSI=57.46%,a detection probability of POD=79.38%,a false alarm rate of FAR=32.46% and a total index of TS=74.89%.A comparison of the potential forecast results between 12hand6 hdemonstrated that the forecast effect of the 6hBP neural network model had better effect and was,therefore,more suitable for the thunderstorm potential forecast in Shenyang.
分 类 号:P427.42[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222