检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:La Mei YUAN Sheng CHEN Cai Xia HE
机构地区:[1]Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P. R. China [2]Department of Mathematics, Harbin Institute of Technology, Harbin 150001, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2017年第1期96-116,共21页数学学报(英文版)
基 金:Supported by National Natural Science Foundation grants of China(Grant No.11301109);the Research Fund for the Doctoral Program of Higher Education(Grant No.20132302120042)
摘 要:The aim of this paper is to introduce and study Hom-Gel'fand-Dorfman super-bialgebras and Hom-Lie conformal superalgebras. In this paper, we provide different ways for constructing Hom- Gel'fand-Dorfman super-bialgebras. Also, we obtain some infinite-dimensional Hom-Lie superalgebras from affinization of Hom-Gel'fand-Dorfman super-bialgebras. Finally, we give a general construction of Hom-Lie conformal superalgebras from Hom-Lie superalgebras and establish the equivalence between quadratic Hom-Lie conformal superalgebras and Hom-Gel'fand-Dorfman super-bialgebras.The aim of this paper is to introduce and study Hom-Gel'fand-Dorfman super-bialgebras and Hom-Lie conformal superalgebras. In this paper, we provide different ways for constructing Hom- Gel'fand-Dorfman super-bialgebras. Also, we obtain some infinite-dimensional Hom-Lie superalgebras from affinization of Hom-Gel'fand-Dorfman super-bialgebras. Finally, we give a general construction of Hom-Lie conformal superalgebras from Hom-Lie superalgebras and establish the equivalence between quadratic Hom-Lie conformal superalgebras and Hom-Gel'fand-Dorfman super-bialgebras.
关 键 词:Lie conformal superalgebra Horn-Lie superalgebra Hom-Lie conformal superalgebra Hom-Gel'fand-Dorfman super-bialgebra
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117