基于分布式压缩感知的联合检测与跟踪算法  被引量:6

Algorithm for joint detection and tracking based on distributed compressed sensing

在线阅读下载全文

作  者:刘静[1] 盛明星 宋大伟 白彩娟[1] 韩崇昭[1] LIU Jing SHENG Ming-xing SONG Da-wei BAI Cai-juan HAN Chong-zhao(School of Electronics and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China National Key Laboratory of Science and Technology on Space Microwave, Xi'an 710000, China)

机构地区:[1]西安交通大学电子与信息工程学院,西安710049 [2]空间微波技术国家重点实验室,西安710000

出  处:《控制与决策》2017年第2期239-246,共8页Control and Decision

基  金:国家自然科学基金项目(61573276);国家自然科学基金创新研究群体科学基金项目(61221063);国家"973"计划项目(2013CB329405)

摘  要:多基雷达系统对隐身目标的检测与跟踪具有良好的效果,但是在集中式融合框架下应用于多基雷达的检测与跟踪算法具有计算复杂、计算量大的缺点.对此,提出一种应用于多基雷达系统的基于分布式压缩感知的联合检测与跟踪算法.首先,应用分布式紧凑感知矩阵追踪算法直接重构出表征目标状态空间信息的稀疏网格反射向量;然后,应用检测前跟踪算法得到精确的目标运动状态和轨迹.仿真实验表明了所提出算法的有效性.Multi-static radar systems are capable of detecting and tracking stealthy targets. However, the state-of-theart detection and tracking algorithms in a centralized fusion framework suffers from high computational complexity.Therefore, an approach, namely distributed compressed sensing based joint detection and tracking, is proposed for the multi-static radar system, which reduces the computational load largely, in a centralized fusion framework. In the proposed approach, a distributed compact sensing matrix pursuit(DCSMP) algorithm is firstly adopted to reconstruct the sparse grid reflection vector by using distributed compressed sensing matrix pursuit algorithm. The outputs of the DCSMP algorithm are directly fed as instantaneous measurements to the track-before-detect(TBD) tracker, which removes the false measurements and correctly associates the target-generated measurements to the respective targets. Numerical experiments are given to illustrate the correctness of the proposed algorithm.

关 键 词:多基雷达系统 分布式压缩感知 分布式紧凑感知矩阵追踪算法 联合检测跟踪 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象