检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:梁纪伟[1] 姜法春 韩雅琳[1] 薛爱丽 宋鑫[1]
机构地区:[1]青岛市疾病预防控制中心,山东青岛266000 [2]青岛市妇女儿童医院
出 处:《中国公共卫生管理》2016年第6期780-782,793,共4页Chinese Journal of Public Health Management
基 金:青岛市科技指导计划项目(KJZD-14-19-NSH)
摘 要:目的探索应用自回归求和移动平均(autoregressive integrated moving average,ARIMA)乘积季节模型分析时间序列对青岛市甲型病毒性肝炎(简称甲肝)发病进行预测分析,为地区甲肝防治提供决策依据。方法利用青岛市自1996以来19年甲肝疫情数据,建立青岛市甲肝ARIMA乘积季节预测模型,并以2015年第一季度月发病数评估模型预测效果。结果季节自回归参数为0.2639,t检验P<0.01,AIC=370.2511,SBC=392.6405,模型残差白噪声χ~2检验P值均>0.05,建立ARIMA乘积季节模型ARIMA(1,1,1)(1,1,2)12,模型表达式(1-0.2639L)(1+1.1814L^(12))(1-L)(1-L^(12))LY=(1+0.1625L^(12)-1.2344L^(24))ε_t,以此开展甲肝发病数预测。结论 ARIMA乘积季节模型能够较好地模拟青岛市甲肝发病趋势,可用于短期预测该地区甲肝发病,为疫情防控提供一定的科学依据。Objective To forecast the incidence of hepatitis A in Qingdao by multiple seasonal autoregressive integrated moving average(ARIMA) model of time series,and to provide decision basis for local prevention and control of hepatitis A. Methods A multiple seasonal ARIMA model was fitted with data of monthly reported cases in Qingdao from 1996 to2014 for hepatitis A and predicted data in the first season of 2015. Results Seasonal auto-regressive coefficient was0.2639. P valves for t-test of all coefficients were all below 0.01.AIC=370.2511, SBC=392.6405.Autocorrelation test for residuals of model was white-noise series(P〈0.05). ARIMA(1,1,1)(1,1,2)12was identified to fit and forecast monthly hepatitis A cases. Model equation was(1-0.2639L)(1 +1.1814L^12)(1-L)(1-L^12) LY =(1 +0.1625L^12-1.2344^624)ε_t.Conclusion The multiple seasonal ARIMA model can be used to fit trends for incidence of hepatitis A in Qingdao and forecast the incidence within a short period, and it can provide certain scientific basis for prevention and control of hepatitis A.
关 键 词:甲肝 ARIMA乘积季节模型 时间序列 预测
分 类 号:R183.4[医药卫生—流行病学] R181.8[医药卫生—公共卫生与预防医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74