检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]常熟理工学院,江苏常熟215500
出 处:《传感技术学报》2016年第12期1853-1857,共5页Chinese Journal of Sensors and Actuators
摘 要:针对消费类电子设备对姿态测量系统的需求,本文提出了一种基于MEMS加速度计、陀螺仪和磁强计的九轴姿态确定算法。针对实际系统中传感器量测噪声未知的情况,首先介绍了一种基于矢量观测器的矩阵Kalman滤波姿态确定算法,然后利用残差匹配技术,设计了一种基于残差匹配的自适应滤波方法。论文采用自适应滤波对传感器量测噪声进行估计,并将估计的量测噪声代入线性矩阵Kalman滤波算法,有效解决了线性矩阵Kalman滤波需要准确量测噪声统计信息的缺陷。最后设计了仿真实验验证本文提出的算法,并将其与线性矩阵Kalman滤波算法比较。仿真结果表明,自适应矩阵Kalman滤波的姿态旋转误差角为0.609 1°,标准差为0.300 9°,能够有效的估计传感器量测噪声,并具有更高的姿态确定精度和稳定性。In view of the demand for attitude measurement system in the consumer electronics devices,a novel attitude determination method based on MEMS accelerometer,MEMS gyroscope and MEMS magnetometer is put forward in this paper. Because the statistics information of the measurement noise of the inertial sensors in the actual system is unknown,a matrix Kalman filtering for attitude determination algorithm based on the vector observer is introduced. In addition,the adaptive filtering method is designed on the basis of the residual matching technology.With this method,the measurement noise can be estimated,and the difficulty of obtaining the accurate statistics of measurement noise for the traditional matrix Kalman filtering is overcome. Finally,the simulation test is designed,and the results show that the rotation error angle is 0.609 1°,and the standard deviation is 0.300 9°,which indicates that the measurement noise of the sensors can be determinated effectively,and the adaptive filter is more accurate and more stable by comparing with the traditional matrix Kalman filtering.
关 键 词:姿态确定 自适应滤波 矩阵Kalman滤波 向量观测器
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28