一种新的无线传感器网络非均匀分簇双簇头算法——PUDCH算法  被引量:9

New Uneven Double Cluster Head Clustering Algorithm for WSN—PUDCH Algorithm

在线阅读下载全文

作  者:戴志强[1] 严承[2] 武正江 

机构地区:[1]吉首大学生态旅游应用技术湖南省重点实验室,湖南张家界427000 [2]黔南民族师范学院计算机与信息学院,贵州都匀558000 [3]中南大学软件学院,长沙410075

出  处:《传感技术学报》2016年第12期1912-1918,共7页Chinese Journal of Sensors and Actuators

基  金:国家自然科学基金项目(61572526);湖南省自然科学基金项目(13JJ3007);湖南省哲学社会科学基金项目(14YBA318)

摘  要:能量利用效率问题一直是限制WSN广泛应用的瓶颈,能源容量对各个网络节点产生至关重要的影响。针对WSN中"能量空洞问题"以及由于簇头任务过重所导致的能量消耗过快,同时也为了提高WSN的能量利用效率,提出了一种无线传感器网络非均匀分簇双簇头算法——PUDCH。该算法先综合考虑节点综合信息(如节点剩余能量、节点到基站的距离),根据节点综合信息通过不同的时间竞争机制来选举簇头,将整个网络划分为不均匀的分簇;在规模大些的簇内,为了减轻簇头的负担再选取副簇头。最后簇头再构造基于最小生成树的最优传输路径。一系列的仿真表明PUDCH路由算法在WSN节约平衡节点能量消耗方面表现优良。Energy utilization efficiency problem has been a bottleneck restricting the wide application of WSN,and the energy capacity of each network node is very important. In view of the WSN "energy hole problem" and due to the cluster head role overload caused by excessive energy consumption and to improve the energy efficiency of WSN proposed non uniform clustering algorithm of dual cluster head—PUDCH a wireless sensor network. The algorithm first considering node comprehensive information such as the distance of the residual energy of node,the node to the base station,according to the comprehensive information of the node through the mechanism of competition in different time to elect cluster heads,the whole network is divided into uneven clustering;in the larger clusters,in order to reduce the burden of light cluster head then select vice cluster head. Finally,the cluster head is then constructed based on the optimal transmission path of the minimum spanning tree. A series of simulations show that the PUDCH routing algorithm has excellent performance in the energy consumption of WSN saving and balancing nodes.

关 键 词:无线传感器网络 双簇头 非均匀分簇 最小生成树 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象