基于差分演化-MP的快速信号稀疏分解  

Fast signal sparse decomposition based on differential evolution - MP

在线阅读下载全文

作  者:王雪瑞[1] 周岩[1] 

机构地区:[1]河南工程学院计算机学院

出  处:《商丘师范学院学报》2016年第12期45-49,共5页Journal of Shangqiu Normal University

基  金:国家自然科学基金资助项目(U1304608)

摘  要:针对传统的稀疏分解算法存在的计算量大和耗费时间长的缺点,利用差分演化算法具有鲁棒性强和全局收敛性好的优点,提出了一种基于差分演化的匹配追踪算法(DE-MP).算法使用差分演化(DE)算法替换传统匹配追踪(MP)算法中的遍历搜索策略,优化了寻找稀疏分解最优原子的过程,从而大大降低了算法复杂度.此外,DE算法特殊的搜索策略很好地提高MP的全局收敛性,进一步提高了稀疏分解的准确性.通过对雷达仿真信号和语音信号仿真实验结果表明:与传统MP算法相比,差分演化匹配追踪算法(DE-MP)在计算速度提高了两个数量级,在收敛精度上也有明显提高,且收敛精度优于其他改进MP算法.To resolves the problem of traditional sparse decomposition algorithm, which cost a huge computational complexity and a long time for sparse decomposition, a matching pursuit (MP) algorithm based on differential evolution (DE) is proposed. The algorithm based on the advantage of DE algorithm which has strong robustness and good global convergence. In the algorithm, DE algorithm replaces the traversing search strategy of the traditional MP algorithm. It greatly reduces the algorithm complexity by optimizing the process of finding the best sparse decomposition atomic. Also the special search strategy of DE algorithm is good to improve the global convergence of the MP and the accuracy of the sparse decomposition. The simulation results of the radar simulation signal and the speech signal test show that, compared with traditional algorithms of MP, the DE - MP increased two orders of magnitude in computing speed and improved obviously on the convergence accuracy ,what is more, the convergence accuracy is superior to the other improve algorithms.

关 键 词:信号稀疏分解 匹配追踪 差分演化算法 正交匹配 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象