机构地区:[1]College of Agronomy, Shanxi Agricultural University, Taigu 030801, China [2]Department of Biology, Xinzhou Teachers' University, Xinzhou 034000, China [3]Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
出 处:《Zoological Systematics》2017年第1期90-101,共12页动物分类学报(英文版)
基 金:supported by the National Natural Sciences Foundation of China(31440078,31501876,31501840);Shanxi Province Programs for Science and Technology Development(20150311010-7);the Research Equipment Development Project of Chinese Academy of Sciences(YZ201509);the Graduate Innovation Project in Shanxi Province,China(2016BY067)
摘 要:The genus Eysarcoris can be easily distinguished from other genera through the two spots in the basal angle of the scutellum. Nevertheless, Eysarcoris species show complex variances. Geometric morphometric methods have been increasingly applied to distinguish species and to define the boundary of genera among insects. In the present study, geometric morphometric approach was firstly employed to evaluate the shape variation of three characters (fore wing, hind wing and pygophore) of E. guttiger, E. annamita and E. ventralis using E. aeneus as outgroup to ascertain whether this approach is a reliable method for the taxonomy of Eysarcoris. Analysis was conducted on the landmarks of the three characters of these species. Multivariate regression of procrustes coordinates against centroid size was conducted to test the presence of allometry. Principal component analysis (PCA), canonical variate analysis (CVA) and cluster analysis were utilized to describe variations in shapes among the studied species. For all of the three characters, though PCA analysis showed some overlap among species, p-values for procrustes distance and mahalanobis distance were all less than 0.0001. The distribution of the three studied species corresponds with their species status. This study demonstrates that the geometric morphometrics of both the fore wing and the hind wing might represent a possible tool for the identification of species within this genus.The genus Eysarcoris can be easily distinguished from other genera through the two spots in the basal angle of the scutellum. Nevertheless, Eysarcoris species show complex variances. Geometric morphometric methods have been increasingly applied to distinguish species and to define the boundary of genera among insects. In the present study, geometric morphometric approach was firstly employed to evaluate the shape variation of three characters (fore wing, hind wing and pygophore) of E. guttiger, E. annamita and E. ventralis using E. aeneus as outgroup to ascertain whether this approach is a reliable method for the taxonomy of Eysarcoris. Analysis was conducted on the landmarks of the three characters of these species. Multivariate regression of procrustes coordinates against centroid size was conducted to test the presence of allometry. Principal component analysis (PCA), canonical variate analysis (CVA) and cluster analysis were utilized to describe variations in shapes among the studied species. For all of the three characters, though PCA analysis showed some overlap among species, p-values for procrustes distance and mahalanobis distance were all less than 0.0001. The distribution of the three studied species corresponds with their species status. This study demonstrates that the geometric morphometrics of both the fore wing and the hind wing might represent a possible tool for the identification of species within this genus.
关 键 词:Geometric morphometrics principal component analysis canonical variateanalysis cluster analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...